1. Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
2. Tsaig Y, Donoho D L. Extensions of compressed sensing. IEEE Transactions on Signal Processing, 2006, 86 (3): 549-571
3. Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
4. Candès E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9): 589-592
5. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
6. Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers (ACSSC’93): Vol.1, Nov 1-3,1993, Pacific Grove, CA, USA. Los Alamitos, CA, USA: IEEE Computer Society,1993: 40-44
7. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B:Methodological, 1996, 58(1): 267-288
8. Gorodnitsky I F, Rao B D. Sparse signal reconstructions from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
9. Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted minimization. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905
10. Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. Proceedings of the 33rd International Conference on Acoustics,Speech, and Signal Processing (ICASSP’08), Mar 31-Apr 4, 2008, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2008: 3869-3872
11. Tipping M E. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 2001, 1(3): 211-244
12. Wipf D, Rao B D. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164
13. Duarte-Carvajalino J M, Sapiro G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, 18(7): 1395-1408
14. Zhang J, Zhao D, Zhao C, et al. Image compressive sensing recovery via collaborative sparsity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 380-391
15. Romberg J. Imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 14-20
16. Haupt J, Nowak R. Compressive sampling vs. conventional imaging. Proceedings of the 2006 IEEE International Conference on Image Processing (ICIP’06), Oct 8-11, 2006, Atlanta, GA, USA. Piscataway, NJ,USA:IEEE, 2006: 1269-1272
17. Wen J, Chen Z, Han Y, et al. A compressive sensing image compression algorithm using quantized DCT and noiselet information. Proceedings of the 35th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’10), Mar 14-19, 2010, Dallas, TX, USA. Piscataway, NJ, USA: IEEE, 2010: 1294-1297
18. Deng C, Lin W, Lee B S, et al. Robust image coding based upon compressive sensing. IEEE Transactions on Multimedia, 2012, 14 (2): 278-290
19. Gan L. Block compressed sensing of natural images. Proceedings of the 15th International Conference on Digital Signal Processing (DSP’07), Jul 1-4, 2007, Cardiff, UK. Piscataway, NJ, USA: IEEE, 2007: 403-406
20. Mun S, Flower J E. Block compressed sensing of images using directional transform. Proceedings of the 16th International Conference on Image Processing (ICIP’09), Nov 7-10, 2009, Cairo, Egypt. Piscataway, NJ, USA:IEEE,2009: 3021-3024
21. Flower J E, Mun S, Tramel E W. Multiscale block compressed sensing with smoother projected Landweber reconstruction. Proceedings of the 19th European Signal Processing Conference (EUSIPCO’11), Aug 29-Sept 2, 2011, Barcelona, Spain. 2011: 64-568
22. Chen C, Tramel E W, Fowler J E. Compressed-sensing recovery of images and video using multihypothesis predictions. Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers (ASILOMAR’11), Nov 6-9, 2011, Pacific Grove, CA, USA. Piscataway, NJ, USA: IEEE, 2011: 1193-1198
23. Qian Y, Lei Y, Sun H. Adaptive Bayesian compressed sensing based on sub-block image. Proceedings of the 11th International Conference on Signal Processing (ICSP’12): Vol 1, Oct 21-25, 2012,Beijing, China. Piscataway, NJ, USA: IEEE, 2012: 97-101
24. Li Y, Sha X, Wang K, et al. The weight-block compressed sensing and its application to image reconstruction. Proceedings of the 2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC’12), Dec 8-12, 2012, Harbin, China. Piscataway, NJ, USA: IEEE, 2012: 723-727
25. Liu L, Wang A, Zhu K, et al. Directional block compressed sensing for image coding. Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS’13), May 19-23, 2013, Beijing, China. Piscataway, NJ, USA:IEEE,2013: 1644-1647
26. Wang R F, Jiao L C, Liu F, et al. Block-based adaptive compressed sensing of image using texture information. Acta Electronica Sinica., 2013, 41(8):1506-1514(in Chinese)
27. Swain M, Barrard D. Color indexing. International Journal of Computer Vision, 1991, 7(1):11-32