1. BISCHOFF R, HUGGENBERGER U, PRASSLER E. KUKA youBot--A mobile manipulator for research and education. Proceedings of the 2011 IEEE International Conference on Robotics and Automation, 2011, May 9-13, Shanghai, China. Piscataway, NJ, USA: IEEE, 2011: 4p.
2. RAJA R, DUTTA A, DASGUPTA B. Learning framework for inverse kinematics of a highly redundant mobile manipulator. Robotics and Autonomous Systems, 2019, 120: Article 103245.
3. MA’ARIF A, RAHMANIAR W, VERA M A M, et al. Artificial potential field algorithm for obstacle avoidance in UAV quadrotor for dynamic environment. Proceedings of the 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT’21), 2021, Jul 17-18, Purwokerto, Indonesia. Piscataway, NJ, USA: IEEE, 2021: 184-189.
4. ZENG N Y, ZHANG H, CHEN Y P, et al. Path planning for intelligent robot based on switching local evolutionary PSO algorithm. Assembly Automation, 2016, 36(2): 120-126.
5. CHAKRAVORTY S, JUNKINS J L. A methodology for intelligent path planning. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005, Jun 27-29, Limassol, Cyprus. Piscataway, NJ, USA: IEEE, 2005: 592-597.
6. GREFENSTETTE J J. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 122-128.
7. BRAND M, MASUDA M, WEHNER N, et al. Ant colony optimization algorithm for robot path planning. Proceedings of the 2010 International Conference on Computer Design and Applications: Vol 3, 2010, Jun 25-27, Qinhuangdao, China. Piscataway, NJ, USA: IEEE, 2010: 436-440.
8. ZHANG D H, CHEN Y M, HUANG C, et al. Study of path planning algorithm based on fuzzy logic. Proceedings of the 2015 International Conference on Logistics Engineering, Management and Computer Science (LEMCS’15), 2015, Jul 29-31, Shenyang, China. Paris, France: Atlantis Press, 2015: 122-126.
9. KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.
10. WEI K, REN B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. Sensors, 2018, 18(2): Article 571.
11. REN J, MCISAAC K A, PATEL R V. Modified Newton's method applied to potential field-based navigation for mobile robots. IEEE Transactions on Robotics, 2006, 22(2): 384-391.
12. LIU J H, YANG J G, LIU H P, et al. An improved ant colony algorithm for robot path planning. Soft Computing, 2017, 21(19): 5829-5839.
13. RAVANKAR A A, RAVANKAR A, EMARU T, et al. HPPRM: Hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots. IEEE Access, 2020, 8: 221743-221766.
14. HUANG Q, TANIE K Z, SUGANO S. Coordinated motion planning for a mobile manipulator considering stability and manipulation. The International Journal of Robotics Research, 2000, 19(8): 732-742.
15. LI J L, XIAO J. A general formulation and approach to constrained, continuum manipulation. Advanced Robotics, 2015, 29(13): 889-899.
16. PAPADOPOULOS E, PAPADIMITRIOU I, POULAKAKIS I. Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems. Robotics and Autonomous Systems, 2005, 51(4): 229-247.
17. PILANIA V, GUPTA K. A hierarchical and adaptive mobile manipulator planner. Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, 2014, Nov 18-20, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2014: 45-51.
18. LI Q H, MU Y Q, YOU Y, et al. A hierarchical motion planning for mobile manipulator. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(9): 1390-1399.
19. HARGAS Y, MOKRANE A, HENTOUT A, et al. Mobile manipulator path planning based on artificial potential field: Application on RobuTER/ULM. Proceedings of the 4th International Conference on Electrical Engineering (ICEE’15), 2015, Dec 13-15, Boumerdes, Algeria. Piscataway, NJ, USA: IEEE, 2015: 6p.
20. CHENG F Y, JI W, ZHAO D, et al.Apple picking robot obstacle avoidance based on the improved artificial potential field method. Proceedings of the 5th International Conference on Advanced Computational Intelligence (ICACI’12), 2012, Oct 18-20, Nanjing, China. Piscataway, NJ, USA: IEEE, 2012: 909-913.
21. CAO B, BI S S , ZHENG J X, et al.Obstacle avoidance algorithm for redundant manipulator of improved artificial potential field method. Journal of Harbin Institute of Technology,2019, 51(7):184-191. (in Chinese)
22. WANG H, SUN Z, LI D Z, et al. An improved RRT based 3-D path planning algorithm for UAV. Proceedings of the 2019 Chinese control and decision conference (CCDC’19), 2019, Jun 3-5, Nanchang, China. Piscataway, NJ, USA: IEEE, 2019: 5514-5519.
23. ABDULKADER M M S, GAJPAL Y, ELMEKKAWY T Y. Hybridized ant colony algorithm for the multi compartment vehicle routing problem.Applied Soft Computing, 2015, 37: 196-203.
24. JIAO Z Q, MA K, RONG Y L, et al. A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs. Journal of Computational Science, 2018, 25: 50-57.
25. CHEN X, KONG Y Y, FANG X, et al. A fast two-stage ACO algorithm for robotic path planning. Neural Computing and Applications, 2013, 22(2): 313-319.
26. KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 1996, 12(4): 566-580.
27. HSU D, LATOMBE J C, KURNIAWATI H. On the probabilistic foundations of probabilistic roadmap planning. Robotics Research: Results of the 12th International Symposium ISRR (Springer Tracts in Advanced Robotics). Berlin, Germany: Springer, 2007: 83-97.
28. BOHLIN R, KAVRAKI L E. Path planning using lazy PRM. Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA’00): Vol 1, 2000, Apr 24-28, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2000: 521-528.
29. LIN Y T. The Gaussian PRM sampling for dynamic configuration spaces. Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision, 2006, Dec 5-8, Singapore. Piscataway, NJ, USA: IEEE, 2006: 5p.
30. BAYAZIT O B, SONG G, AMATO N M. Ligand binding with OBPRM and user input. Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA’01): Vol 1, 2001, May 21-26, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2001: 954-959.
31. HSU D, JIANG T T, REIF J, et al. The bridge test for sampling narrow passages with probabilistic roadmap planners. Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA’03): Vol 3, 2003, Sept 14-19, Taipei, China. Piscataway, NJ, USA: IEEE, 2003: 4420-4426.
32. ZHONG J D, SU J B. Path planning of robot narrow passage based on probabilistic landmarks. Control and Decision, 2010, 25(12): 1831-1836. (in Chinese)
33. CHEN G, JIA Q X, LI T, et al. Recursive calibrations for robot kinematics parameters. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 28-32. (in Chinese)
34. DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics, 1955, 22(2): 215-221.
35. HAYATI S A. Robot arm geometric link parameter estimation. Proceedings of the 22nd IEEE Conference on Decision and Control, 1983, Dec 14-16, San Antonio, TX, USA. Piscataway, NJ, USA: IEEE, 1983: 1477-1483.
|