1. AHMADI E, OSHIMA Y. Materials issues and devices
of α-and β-Ga2O3. Journal of Applied Physics, 2019, 126(16): Article
160901/1-18
2. LIU S, MA S F, HUANG X, et al.
CVD approach to a single gallium oxide nanowire for solar-blind UV detector.
Current Chinese Science, 2023, 3(1): 23-31.
3. ZHUO Y, CHEN Z M, TU W B, et
al. β-Ga2O3 versus ε-Ga2O3: Control
of the crystal phase composition of gallium oxide thin film prepared by
metal-organic chemical vapor deposition. Applied Surface Science, 2017, 420:
802-807.
4. SASAKI K, HIGASHIWAKI M,
KURAMATA A, et al. MBE grown Ga2O3 and its power device
applications. Journal of Crystal Growth, 2013, 378: 591-595.
5. FARIS A I, ABD J A, MUSTAFA F
A. Effect of CdO on the optical properties of Ga2O3 using
PLD technique. AIP Conference Proceeding 2394(1): Proceedings of the 1st
Samarra International Conference for Pure and Applied Sciences (SICPS’21),
2021, Mar 23-24, Samarra, Iraq. Melville, NY, USA: AIP Publishing, 2022:
Article 090041/1-9.
6. NISHINAKA H, NAGAOKA T, KAJITA
Y, et al. Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition. Materials Science in
Semiconductor Processing, 2021, 128: Article 105732/1-4.
7. SHANG Y, TANG K, CHEN Z R, et
al. Growth and characterization of Ta-doped Ga2O3 films
deposited by magnetron sputtering. Materials Science in Semiconductor
Processing, 2021, 134: Article 106040/1-7.
8. LEE H, KIM K, WOO J J, et al.
Dimethylgallium isopropoxide as a new volatile source for ALD and MOCVD of Ga2O3.
ECS Transactions, 2009, 25(8): 587-592.
9. SHEORAN H, SINGH R.
Investigation of high performance Schottky diodes on Ga2O3 epilayer using Cu with high barrier height, high temperature stability and
repeatability. Journal of Physics D: Applied Physics, 2023, 56: Article
405113/1-11.
10. GUO W, HAN Z, ZHAO X L, et
al. Large-area β-Ga2O3 Schottky barrier diode and
its application in DC–DC converters. Journal of Semiconductors, 2023,
44(7): Article 072805/1-4.
11. ROY S, BHATTACHARYYA A,
PETERSON C, et al. β-Ga2O3 lateral
high-permittivity dielectric superjunction Schottky barrier diode with 1.34
GW/cm² power figure of merit. IEEE Electron Device Letters, 2022, 43(12):
2037-2040.
12. HONG Y H, ZHENG X F, HE Y L,
et al. The optimized interface characteristics of β-Ga2O3 Schottky barrier diode with low temperature annealing. Applied Physics Letters,
2021, 119(13): Article 132103/1-5.
13. MA P P, ZHENG J, ZHANG Y B,
et al. Lateral β-Ga2O3 Schottky barrier diode
fabricated on (–201) single crystal substrate and its temperature-dependent
current-voltage characteristics. Chinese Physics B, 2022, 31(4): Article
047302/1-4.
14. OISHI T, URATA K, HASHIKAWA
M, et al. Microwave power rectification using β-Ga2O3 Schottky barrier diodes. IEEE Electron Device Letters, 2019, 40(9): 1393-1395.
15. HAN S W, YANG S, LI R, et al.
Current-collapse-free and fast reverse recovery performance in vertical
GaN-on-GaN Schottky barrier diode. IEEE Transactions on Power Electronics,
2019, 34(6): 5012-5018.
16. AN N, LI L, WANG W G, et al.
High-efficiency D-band monolithically integrated GaN SBD-based frequency
doubler with high power handling capability. IEEE Transactions on Electron
Devices, 2022, 69(9): 4843-4847.
17. CHENG H Y, LI W M, WANG P R,
et al. A fast recovery SiC TED MOS MOSFET with Schottky barrier diode (SBD).
Crystals, 2023, 13(4): Article 650/1-11.
18. CHEN H, ZHANG Y R, HE P, et
al. Integrated lateral SBD temperature sensor of a 4H-SiC VDMOS for real-time
temperature monitoring. IEEE Transactions on Electron Devices, 2023, 70(7):
3813-3819.
19. WANG C L, ZHANG J C, XU S R,
et al. Progress in state-of-the-art technologies of Ga2O3 devices. Journal of Physics D: Applied Physics, 2021, 54(24): Article
243001/1-33.
20. HU H D, LIU Y C, HAN G Q, et
al. Effects of post annealing on electrical performance of polycrystalline Ga2O3 photodetector on sapphire. Nanoscale Research Letters, 2020, 15: Article 100/
1-8.
21. COMSTOCK D J, ELAM J W.
Atomic layer deposition of Ga2O3 films using
trimethylgallium and ozone. Chemistry of Materials, 2012, 24(21): 4011-4018.
22. WANG Y B, XU W H, HAN G Q, et
al. Temperature-dependent characteristics of Schottky barrier diode on
heterogeneous β-Ga2O3 (2(—)01)-Al2O3-Si
substrate. Journal of Physics D: Applied Physics, 2021, 54(3): Article 034004/1-5.
23. KONISHI K, GOTO K, MURAKAMI
H, et al. 1-kV vertical Ga2O3 field-plated Schottky
barrier diodes. Applied Physics Letters, 2017, 110(10): Article 103506/1-5.
24. HASSANIEN A M, ATTA A A,
EL-NAHASS M M, et al. Effect of annealing temperature on
structural and optical properties of gallium oxide thin films deposited by
RF-sputtering. Optical and Quantum Electronics, 2020, 52: Article 194/1-16.
25. LI X, LU H L, MA H P, et al.
Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Current Applied
Physics, 2019, 19(2): 72-81.
26. GU L, MA H P, SHEN Y, et al.
Temperature-dependent oxygen annealing effect on the properties of Ga2O3 thin film deposited by atomic layer deposition. Journal of Alloys and Compounds,
2022, 925: Article 166727/1-12.
27. XIE Y D, NIE Y H, ZHENG Y, et
al. The influence of β-Ga2O3 film thickness on the
optoelectronic properties of β-Ga2O3@ ZnO nanocomposite
heterogeneous materials. Materials Today Communications, 2021, 29: Article
102873/1-9.
28. CHENG J C, TSUI B Y. Effects
of rapid thermal annealing on Ar inductively coupled plasma-treated n-type
4H-SiC Schottky and Ohmic contacts. IEEE Transactions on Electron Devices,
2018, 65(9): 3739-3745.
29. KAWASHIMA H, NOGUCHI H,
MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated
on silicon-based heteroepitaxially grown diamond substrates. Applied Physics
Express, 2015, 8(10): Article 104103/1-3.
30. GILBART B, DICKENSON A, WALSH
J L, et al. Mutual interaction among multiple surface barrier discharges.
Plasma Processes and Polymers, 2022, 19(4): Article 2100181/1-13.
31. ZHANG M L, MA W Y, LIU Z, et al. Sensing
performance of β-Ga2O3 metal–semiconductor-metal
deep ultraviolet photodetectors with refractory TiW electrodes at high
temperatures. Results in Physics, 2023, 54: Article 107110/1-8.
|