1. Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. Journal of Applied physics, 1994, 76(3): 1363-1398
2. Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor science and technology, 2003, 18(4): R33
3. Xun Q, Xun B, Li Z, et al. Application of SiC power electronic devices in secondary power source for aircraft. Renewable and Sustainable Energy Reviews, 2017, 70: 1336-1342
4. Okumura H. Present status and future prospect of widegap semiconductor high-power devices. Japanese journal of applied physics, 2006, 45(10R): 7565-7568
5. Casady J B, Johnson R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics, 1996, 39(10): 1409-1422
6. Gonzalez J O, Wu R, Jahdi S, et al. Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, cascode JFETs and IGBTs. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7375-7385
7. She X, Huang A Q, Lucia O, et al. Review of silicon carbide power devices and their applications. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205
8. Kimoto T. High-voltage SiC power devices for improved energy efficiency. Proceedings of the Japan Academy, Series B, 2022, 98(4): 161-189
9. Sugawara Y. Developments of SiC devices and SiC inverters aimed at electric power applications. Electrical Engineering in Japan, 2019, 208(3-4): 3-9
10. Wang X, Cooper J A. High-voltage n-channel IGBTs on free-standing 4H-SiC epilayers. IEEE Transactions on Electron Devices, 2010, 57(2): 511-515
11. Vechalapu K, Bhattacharya S, Van Brunt E, et al. Comparative evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for medium-voltage converter under the same dv/dt conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 5(1): 469-489
12. Tiwari A K, Antoniou M, Lophitis N, et al. Retrograde p-well for 10-kV class SiC IGBTs. IEEE Transactions on Electron Devices, 2019, 66(7): 3066-3072
13. Tamaki T, Walden G G, Sui Y, et al. Optimization of on-state and switching performances for 15–20-kV 4H-SiC IGBTs. IEEE transactions on electron devices, 2008, 55(8): 1920-1927
14. Yang X, Tao Y, Yang T, et al. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage. Journal of Semiconductors, 2018, 39(3): 034005
15. Matsushita K, Ninomiya H, Naijo T, et al. Low gate capacitance IEGT with trench shield emitter (IEGT-TSE) realizing high frequency operation. Proceedings of IEEE 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD), May 2630, 2013, Kanazawa, Japan. Piscataway, NJ, USA: IEEE, 2013: 269-272
16. Nakamura T, Nakano Y, Aketa M, et al. High performance SiC trench devices with ultra-low Ron. Proceedings of IEEE 2011 International Electron Devices Meeting, Dec 5-7, 2011, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2011: 26.5.1-26.5.3
17. Menon K G, Nakajima A, Ngwendson L, et al. Performance evaluation of 10-kV SiC trench clustered IGBT. IEEE electron device letters, 2011, 32(9): 1272-1274
18. Mori M, Oyama K, Kohno Y, et al. A trench-gate high-conductivity IGBT (HiGT) with short-circuit capability. IEEE transactions on Electron Devices, 2007, 54(8): 2011-2016
19. Li X, Tong X, Huang A Q, et al. SiC trench MOSFET with integrated self-assembled three-level protection Schottky barrier diode. IEEE Transactions on Electron Devices, 2017, 65(1): 347-351
20. Agarwal A, Haney S. Some critical materials and processing issues in SiC power devices. Journal of electronic materials, 2008, 37: 646-654
21. Han L, Liang L, Kang Y, et al. A review of SiC IGBT: models, fabrications, characteristics, and applications. IEEE Transactions on Power Electronics, 2020, 36(2): 2080-2093
22. Zhang M, Li B, Zheng Z, et al. A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field. Energies, 2020, 14(1): 82
23. Kimoto T, Cooper J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications. New York: John Wiley & Sons, 2014: 333-337
24. Mao H, Wang Y, Wu X, et al. Simulation study of 4H-SiC trench insulated gate bipolar transistor with low turn-off loss. Micromachines, 2019, 10(12): 815
25. Wang Y, Yu C H, Mao H K, et al. Low turn-off loss 4H-SiC insulated gate bipolar transistor with a trench heterojunction collector. IEEE Journal of the Electron Devices Society, 2020, 8: 1010-1015
26. Wu L, Liu M, Zhang M, et al. Low On-State Voltage and EMI Noise 4H-SiC IGBT With Self-Biased Split-Gate pMOS. IEEE Transactions on Electron Devices, 2022, 70(2): 647-652
27. Wei J, Zhang M, Jiang H, et al. Dynamic degradation in SiC trench MOSFET with a floating p-shield revealed with numerical simulations. IEEE Transactions on Electron Devices, 2017, 64(6): 2592-2598
28. Wei J, Zhang M, Jiang H, et al. Low ON-resistance SiC trench/planar MOSFET with reduced OFF-state oxide field and low gate charges. IEEE Electron Device Letters, 2016, 37(11): 1458-1461
29. Jiang H, Wei J, Dai X, et al. SiC trench MOSFET with shielded fin-shaped gate to reduce oxide field and switching loss. IEEE electron device letters, 2016, 37(10): 1324-1327
30. Wei J, Zhang M, Jiang H, et al. Gate structure design of SiC trench IGBTs for injection-enhancement effect. IEEE Transactions on Electron Devices, 2019, 66(7): 3034-3039
31. Liu Y J, Wang Y, Hao Y, et al. 4H-SiC trench IGBT with back-side npn collector for low turn-off loss. IEEE Transactions on Electron Devices, 2016, 64(2): 488-493
32. Usman M, Nawaz M. Device design assessment of 4H–SiC n-IGBT–A simulation study. Solid-state electronics, 2014, 92: 5-11
33. Deng X, Cheng Z, Chen Z, et al. A hybrid-channel injection enhanced modulation 4H-SiC IGBT transistors with improved performance. IEEE Transactions on Electron Devices, 2022, 69(8): 4421-4426
34. Zhang M, Zhang Y, Li B, et al. Cell Design Consideration in SiC Planar IGBT and Proposal of New SiC IGBT With Improved Performance Trade-Off. IEEE Journal of the Electron Devices Society, 2023, 11: 198-203
|