References
[1] GUAN S H, MENG C, BISWAL B. Diffusion-probabilistic least mean square algorithm. Circuits, Systems, and Signal Processing,
2021, 40(3): 1295 -1313.
[2] LIANG T, LI Y, ZAKHAROV Y V, et al. Constrained least lncosh adaptive filtering algorithm. Signal Processing, 2021, 183: Article 108044.
[3] SHI W L, LI Y S, WANG Y Y. Noise-free maximum correntropy criterion algorithm in non-Gaussian environment. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 2224 -2228.
[4] AL-SAYED S, ZOUBIR A M, SAYED A H. Robust adaptation in impulsive noise. IEEE Transactions on Signal Processing, 2016,
64(11): 2851 -2865.
[5] GUAN S H, LI Z. Nonparametric variable step-size LMAT algorithm. Circuits, Systems, and Signal Processing , 2017, 36(3): 1322 -1339.
[6] LUO Y J, YANG J L, ZHANG Q, et al. A fractional-order adaptive filtering algorithm in impulsive noise environments. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(10): 3376 -3380.
[7] LIU J C, YU X, LI H R. A nonparametric variable step-size NLMS algorithm for transversal filters. Applied Mathematics and
Computation, 2011, 217(17): 7365 -7371.
[8] RUSU C, COWAN C F N. The convex variable step-size (CVSS) algorithm. IEEE Signal Processing Letters, 2000, 7(9): 256 -258.
[9] RUSU C, COWAN C F N. The exponentiated convex variable step-size (ECVSS) algorithm. Signal Processing, 2010, 90(9): 2784 -2791.
[10] ROOPA S, NARASIMHAN S V. Transform domain variable step-size griffiths least mean square adaptive algorithm and its applications. Computers and Electrical Engineering, 2014, 40(4): 1028 -1041.
[11] BOUKIS C, MANDIC D P, CONSTANTINIDES A G. A class of stochastic gradient algorithms with exponentiated error cost functions. Digital Signal Processing, 2009, 19(2): 201 -212.
[12] BOUKIS C, MANDIC D P, CONSTANTINIDES A G. A generalised mixed norm stochastic gradient algorithm. Proceedings of the 15th International Conference on Digital Signal Processing, 2007, Jul 1 - 4, Cardiff, UK. Piscataway, NJ, USA: IEEE, 2007: 27 -30.
[13] MANSOOR U B, ASAD S M, ZERGUINE A. Stochastic gradient algorithm based on an improved higher order exponentiated error cost function. Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, 2014, Nov 2 - 5, Pacific Grove, CA, USA. Piscataway, NJ, USA: IEEE, 2014: 900 -903.
[14] WANG S Y, ZHENG Y F, DUAN S K, et al. A class of improved least sum of exponentials algorithms. Signal Processing, 2016, 128: 340 -349.
[15] PAULINE S H, SAMIAPPAN D, KUMAR R, et al. Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation. Applied Acoustics, 2020, 159: Article 107074.
[16] ABOULNASR T, MAYYAS K. A robust variable step-size LMS-type algorithm: Analysis and simulations. IEEE Transactions on
Signal Processing, 1997, 45(3): 631 -639.
[17] LANG S. Chapter XIII: Taylor's formula. A First Course in Calculus, 5th edn. New York, NY, USA: Springer Science + Business Media, 1986: 427 -472.
[18] SMITH K T. Taylor polynomials. Power Series from a Computational Point of View. New York, NY, USA: Springer-Verlag, 1987: 1 -29.
[19] GUAN S H, JIANG R Z, BIAN H K, et al. The profiles of non-stationarity and non-linearity in the time series of resting-state
brain networks. Frontiers in Neuroscience, 2020, 14, DOI: 10. 3389/ fnins. 2020. 00493
[20] ZHU X F, LI H M, SHEN H T, et al. Fusing functional connectivity with network nodal information for sparse network pattern learning of functional brain networks. Information Fusion, 2021, 75: 131 -139.
[21] SHAW L, ROUTRAY A. Brain state classification with group l1-norm sparse PDC as novel features for EEG. IEEE Sensors Journal, 2021, 21(12): 13506 -13513.
|