1. ZHANG Y, WEI H Y. Risk-aware cloud-edge computing framework for delay-sensitive industrial IoTs. IEEE Transactions on Network and Service Management, 2021, 18(3): 2659-2671
2. SHIH Y Y, LIN H P, PANG A C, et al. An NFV-based service framework for IoT applications in edge computing environments. IEEE Transactions on Network and Service Management, 2019, 16(4): 1419-1434
3. ZHU R J, LI S H, WANG P S, et al. Energy-efficient deep reinforced traffic grooming in elastic optical networks for cloud–fog computing. IEEE Internet of Things Journal, 2021, 8(15): 12410-12421
4. CAO H T, XIAO A L, HU Y, et al. On virtual resource allocation of heterogeneous networks in virtualization environment: A service oriented perspective. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2468-2480
5. LI B, HE Q, CUI G M, et al. READ: Robustness-oriented edge application deployment in edge computing environment. IEEE Transactions on Services Computing, 2022, 15(3): 1746-1759
6. YU A, YANG H, NGUYEN K K, et al. Burst traffic scheduling for hybrid E/O switching DCN: An error feedback spiking neural network approach. IEEE Transactions on Network and Service Management, 2021, 18(1):882-893
7. TAEB S, SHAHRIAR N, CHOWDHURY S R, et al. Virtual network embedding with path-based latency guarantees in elastic optical networks. Proceedings of the IEEE 27th International Conference on Network Protocols (ICNP’19), 2019, Oct 8-10, Chicago, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 12p
8. ZHU M, SUN Q, ZHANG S Y, et al. Energy-aware virtual optical network embedding in sliceable-transponder-enabled elastic optical networks. IEEE Access, 2019, 7: 41897-41912
9. NONDE L, EL-GORASHI T E H, ELMIRGHANI J M H. Energy efficient virtual network embedding for cloud networks. IEEE Journal of Lightwave Technology, 2015, 33(9): 1828-1849
10. SHAHRIAR N, TAEB S, CHOWDHURY S R, et al. Achieving a fully-flexible virtual network embedding in elastic optical networks. Proceedings of the 2019 IEEE Conference on Computer Communications (INFOCOM’19), 2019, Apr 29-May 2, Paris, France. Piscataway, NJ, USA: IEEE, 2019: 1756-1764
11. CHAI R, XIE D S, LUO L, et al. Multi-objective optimization based virtual network embedding algorithm for software-defined networking. IEEE Transactions on Network and Service Management. 2020, 17(1): 532-546
12. ZONG Y, OU Y N, HAMMAD A, et al. Location-aware energy efficient virtual network embedding in software-defined optical data center networks. IEEE/OSA Journal of Optical Communications and Networking, 2018, 10(7): 58-70
13. WANG J J, JIANG C X, ZHANG H J, et al. Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1472-1514
14. WU H T, ZHOU F, CHEN Y J, et al. On virtual network embedding: Paths and cycles. IEEE Transactions on Network and Service Management, 2020, 17(3): 1487-1500
15. YANG H, YU A, ZHANG J, et al. Data-driven network slicing from core to RAN for 5G broadcasting services. IEEE Transactions on Broadcasting, 2021, 67(1): 23-32
16. YANG H, ZHAO X D, YAO Q Y, et al. Accurate fault location using deep neural evolution network in cloud data center interconnection. IEEE Transactions on Cloud Computing, 2022, 10(2): 1402-1412
17. ZHU R J, SAMUEL A, WANG P S, et al. Survival multipath energy-aware resource allocation in SDM-EONs during fluctuating traffic. Journal of Lightwave Technology, 2021, 39(7): 1900-1912
18. WANG J J, JIANG C X, ZHANG H J, et al. Learning-aided network association for hybrid indoor LiFi-WiFi systems. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3561-3574
19. ZHU R J, SAMUEL A, WANG P S, et al. Protected resource allocation in space division multiplexing elastic optical networks with fluctuating traffic. Journal of Network and Computer Applications, 2021, 174: Article 102887/1-14
20. CHEN X L, LI B J, PROIETTI R, et al. DeepRMSA: A deep reinforcement learning framework for routing, modulation and spectrum assignment in elastic optical networks. Journal of Lightwave Technology, 2019, 37(16): 4155-4163
21. YAN Z X, GE J G, WU Y L, et al. Automatic virtual network embedding: A deep reinforcement learning approach with graph convolutional networks. IEEE Journal on Selected Areas in Communications, 2020, 38(6): 1040-1057
22. ZHANG P Y, YAO H P, LIU Y J. Virtual network embedding based on computing, network, and storage resource constraints. IEEE Internet of Things Journal, 2018, 5(5): 3298-3304
23. HAERI S, TRAJKOVIC L. Virtual network embedding via Monte Carlo tree search. IEEE Transactions on Cybernetics, 2018, 48(2): 510-521
24. ZHU R J, LI S S, WANG P S, et al. Time and spectrum fragmentation aware virtual optical network embedding in elastic optical networks. Optical Fiber Technology, 2020, 54: Article 102117
25. WEI W T, GU H X, WANG K, et al. Improving cloud-based IoT services through virtual network embedding in elastic optical inter-dc networks. IEEE Internet of Things Journal, 2019, 6(1): 986-996
26. HOU W G, NING Z L, GUO L, et al. Novel framework of risk-aware virtual network embedding in optical data center networks. IEEE Systems Journal, 2018, 12(3): 2473-2482
27. CAO H T, YANG L X, ZHU H B. Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual network embedding. IEEE Internet of Things Journal, 2018, 5(1): 108-120
28. ZHAO C G, PARHAMI B. Virtual network embedding through graph eigenspace alignment. IEEE Transactions on Network and Service Management, 2019, 16(2): 632-646
29. LI M Y, CHEN C L, HUA C Q, et al. Intelligent latency-aware virtual network embedding for industrial wireless networks. IEEE Internet of Things Journal, 2019, 6(5): 7484-7496
30. BLENK A, KALMBACH P, ZERWAS J, et al. NeuroViNE: A neural preprocessor for your virtual network embedding algorithm. Proceedings of the 2018 IEEE Conference on Computer Communications (INFOCOM’18), 2018, Apr 16-19, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2018: 405-413
31. CHEN X L, PROIETTI R, LIU C Y, et al. A multi-task-learning-based transfer deep reinforcement learning design for autonomic optical networks. IEEE Journal on Selected Areas in Communications, 2021, 39(9): 2878-2889
32. LIU W X. Intelligent routing based on deep reinforcement learning in software-defined data-center networks. Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC’19), 2019, Jun 29-Jul 3, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2019: 6p
33. YAO H P, ZHANG B, ZHANG P Y, et al. RDAM: A reinforcement learning based dynamic attribute matrix representation for virtual network embedding. IEEE Transactions on Emerging Topics in Computing, 2021, 9(2): 901-914
34. DOLATI M, HASSANPOUR S B, GHADERI M, et al. DeepViNE: Virtual network embedding with deep reinforcement learning. Proceedings of the 2019 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS’19), 2019, Apr 29-May 2, Paris, France. Piscataway, NJ, USA: IEEE, 2019: 879-885
35. ZHANG X, LI B J, PENG J Q, et al. You calculate and I provision: A DRL-assisted service framework to realize distributed and tenant-driven virtual network slicing. Journal of Lightwave Technology, 2021, 39(1): 4-16
36. YAO H P, CHEN X, LI M Z, et al. A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing, 2018, 284: 1-9
37. CHIANG Y, CHAO Y H, HSU C H, et al. Virtual network embedding with dynamic speed switching orchestration in fog/edge network. IEEE Access, 2020, 8: 84753-84768
38. CHEN Q, JIANG Y F, LEI Y, et al. A profit-maximized approach based on link importance degree for virtual optical networks mapping. Proceedings of the 2019 Asia Communications and Photonics Conference (ACP’19), 2019, Nov 2-5, Chengdu, China. Piscataway, NJ, USA: IEEE, 2019: 3p
39. FU X Y, YU F R, WANG J Y, et al. Dynamic service function chain embedding for NFV-enabled IoT: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 2020, 19(1): 507-519
|