[1] RUSSAKOVSKY O, DENG J,
SU H, et al. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 2015, 115(3): 211
-252.
[2] FRIEDMAN C, RINDFLESCH
T C, CORN M. Natural language processing: state of the
art and prospects for significant progress, a workshop sponsored by the
National Library of Medicine. Journal of Biomedical Informatics,
2013, 46(5):765 -773.
[3] JEAN N, BURKE M, XIE
M, et al. Combining satellite imagery and machine learning to
predict poverty. Science, 2016, 353: 790 -794.
[4] MIOTTO R, WANG F, WANG
S, et al. Deep learning for healthcare: review,
opportunities and challenges. Briefings in Bioinformatics, 2018,
19(6): 1236 -1246.
[5] HOU C B, LI Y P, CHEN
X, et al. Automatic modulation classification using KELM
with joint features of CNN and LBP. Physical Communication,
2020, 45: Article 101259.
[6] YE H, LI G Y, JUANG B
H. Power of deep learning for channel estimation and signal
detection in OFDM systems. IEEE Wireless Communications Letters,
2018, 7(1): 114 -117.
[7] ANDERSON A, YOUNG S R,
KARNOWSKI T P, et al. Deepmod: an over-the-air
trainable machine modem for resilient PHY layer communications.
Proceedings of the 2018 IEEE Military Communications Conference
(MILCOM’18), 2018, Oct 29 - 31, Los Angeles, CA, USA.
Piscataway, NJ, USA: IEEE, 2018: 178 -183.
[8] WANG Y, LIU M, YANG J,
et al. Data-driven deep learning for automatic modulation
recognition in cognitive radios. IEEE Transactions on Vehicular
Technology, 2019, 68 (4): 4074 - 4077.
[9] WEI W, MENDEL J M.
Maximum-likelihood classification for digital amplitude-phase
modulations. IEEE Transactions on Communications, 2000,
48(2): 189 -193.
[10] ALI A, FAN Y Y.
Automatic modulation classification using deep learning based on sparse
autoencoders with nonnegativity constraints. IEEE Signal
Processing Letters, 2017, 24 (11): 1626 -1630.
[11] ALI A K, ERCELEBI E.
Automatic modulation recognition of DVB-S2X standard-specific
with an APSK-based neural network classifier. Measurement,
2020, 151: Article 107257.
[12] ALYAOUI N, HNIA H B,
KACHOURI A, et al. The modulation recognition approaches for
software radio. Proceedings of the 2nd International Conference
on Signals, Circuits and Systems, 2008, Nov 7 - 9, Nabeul,
Tunisia. Piscataway, NJ, USA: IEEE, 2008: 1 -5.
[13] WANG Z Y, YANG A Y, GUO
P, et al. CNN based OSNR estimation method for long
haul optical fiber communication systems. Proceedings of
the 2018 Asia Communications and Photonics Conference (ACP’18), 2018, Oct 26 -29, Hangzhou, China. Piscataway, NJ,
USA: IEEE, 2018: 892 -894.
[14] PENG S L, JIANG H Y,
WANG H X, et al. Modulation classification using
convolutional neural network based deep learning model.
Proceedings of the 26th Wireless and Optical Communication Conference (
WOCC’17 ), 2017, Apr 7 - 8, Newark, NJ, USA. Piscataway,
NJ, USA: IEEE, 2017: 1 -5.
[15] KUMAR Y, SHEORAN M,
JAJOO G, et al. Automatic modulation classification
based on constellation density using deep learning. IEEE
Communications Letters, 2020, 24(6): 1275 - 1278.
[16] O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition
networks. Proceedings of the 17th International Conference
on Engineering Applications of Neural Networks (EANN’16), 2016, Sept 2 -5, Aberdeen, UK. CCIS 629. Berlin, Germany:
Springer, 2016: 213 -226.
[17] RAJENDRAN S, MEERT W
D, GIUSTINIANO D, et al. Deep learning models for
wireless signal classification with distributed low-cost spectrum sensors.
IEEE Transactions on Cognitive Communications and
Networking, 2018, 4(3): 433 -4458.
[18] ZHANG Z F, LUO H,
WANG C, et al. Automatic modulation classification using CNN-LSTM
based dual-stream structure. IEEE Transactions on Vehicular
Technology, 2020, 69 ( 11 ): 13521 -13531.
[19] KRIZHEVSKY A,
SUTSKEVER I, HINTON G E. ImageNet classification with deep
convolutional neural networks. Proceedings of the 25th International
Conference on Neural Information Processing Systems (NIPS’12): Vol 1, 2012, Dec 3 -6, Lake Tahoe, NV, USA. Red Hook,
NY, USA: Curran Associates Inc, 2012: 1097 -1105.
[20] YUN S D, HAN D Y,
CHUN S H, et al. CutMix: regularization strategy to train strong
classifiers with localizable feature. Proceedings of the 2019
IEEE/ CVF International Conference on Computer Vision ( ICCV’19 ), 2019, Oct 27-Nov 2, Seoul, Republic of Korea.
Piscataway, NJ, USA: IEEE, 2019: 6022 - 6031.
[21] INOUE H. Data
augmentation by pairing samples for images classification. arXiv
Preprint, arXiv: 1801. 02929, 2018.
[22] GOODFELLOW I J,
POUGET-ABADIE J, MIRZA M, et al. Generative adversarial
Nets. Advances in Neural Information Processing Systems, 2014,
3(11): 2672 -2680.
[23] WEI J, ZOU K. EDA:
easy data augmentation techniques for boosting performance on
text classification tasks. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP’19), 2019, Nov 3 - 7, Hong Kong, China.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2019: 6382 -6388.
[24] KO T, PEDDINTI V,
POVEY D, et al. Audio augmentation for speech recognition.
Proceedings of the 2015 Annual Conference of the International Speech
Communication Association (INTERSPEECH’15), 2015, Sept 6 - 10, Dresden, Germany. 2015: 3586 -3589. [25] PARK D S, CHAN W,
ZHANG Y, et al. SpecAugment: a simple data augmentation method
for automatic speech recognition. arXiv Preprint, arXiv: 1904.
08779, 2019.
[26] HUANG L, PAN W J,
ZHANG Y, et al. Data augmentation for deep learning-based radio
modulation classification. IEEE Access, 2020, 8: 1498 -1506.
[27] CHEN S Y, ZHANG Y, HE
Z Y, et al. A novel attention cooperative framework for
automatic modulation recognition. IEEE Access, 2020, 8: 15673
-15686.
[28] O’SHEA T J, WEST N E. Radio machine learning dataset generation with GNU radio.
Proceedings of the 2016 GNU Radio Conference (GRCon’16): Vol 1, 2016, Sep 12 - 16, Boulder, CO, USA. 2016: 1 -12.
[29] ZHONG Z, ZHENG L,
KANG G L, et al. Random erasing data augmentation. Proceedings
of the AAAI Conference on Artificial Intelligence, 2020, 34(7):
13001 -13008.
[30] SHEA T O, HOYDIS J.
An introduction to deep learning for the physical layer. IEEE
Transactions on Cognitive Communications and Networking, 2017,
3(4): 563 -575.
[31] KULIN M, T KAZAZ T,
MOERMAN I, et al. End-to-end learning from spectrum
data: a deep learning approach for wireless signal identification in
spectrum monitoring applications. IEEE Access, 2018, 6: 18484
-18501.
[32] SAINATH T N, VINYALS
O, SENIOR A, et al. Convolutional long short-term memory,
fully connected deep neural networks. Proceedings of the 2015
IEEE International Conference on Acoustics, Speech and
Signal Processing ( ICASSP’15), 2015, Apr 19 - 24, South
Brisbane, Australia. Piscataway, NJ, USA: IEEE, 2015: 4580 -4584.
|