[1] YIN Z, WANG Y X, LIU
L, et al. Cross-subject EEG feature selection for emotion
recognition using transfer recursive feature elimination. Frontiers in
Neurorobotics, 2017, 11: Article 19.
[2] GUI Q, JIN Z P, XU W Y, et al. Multichannel
EEG-based biometric using improved
RBF neural networks. Proceedings of the 2015 IEEE Signal
Processing in Medicine and Biology Symposium ( SPMB’15 ), 2015, Dec 12, Philadelphia, PA, USA. Piscataway, NJ, USA: IEEE,
2015: 1 -6.
[3] FRANTZIDIS C A,
BRATSAS C, PAPADELIS C L, et al. Toward emotion aware
computing: an integrated approach using multichannel
neurophysiological recordings and affective visual stimuli. IEEE Transactions
on Information Technology in Biomedicine, 2010, 14(3):
589 -597.
[4] ZHENG W L, ZHU J Y, LU
B L. Identifying stable patterns over time for emotion
recognition from EEG. IEEE Transactions on Affective Computing, 2019,
10(3): 417 -429.
[5] CHEN X, XU X Y, LIU A
P, et al. The use of multivariate EMD and CCA for denoising
muscle artifacts from few-channel EEG recordings. IEEE
Transactions on Instrumentation and Measurement, 2018, 67(2):
359 -370.
[6] KHOSROWABADI R, QUEK H C, WAHAB A, et al. EEG- based emotion recognition
using self-organizing map for boundary detection. Proceedings of
the 20th International Conference on Pattern Recognition, 2010,
Aug 23 - 26, Istanbul, Turkey. Piscataway, NJ, USA: IEEE,
2010: 4242 -4245.
[7] RAHMAN M A, HOSSAIN M
F, HOSSAIN M, et al. Employing PCA and t-statistical
approach for feature extraction and classification of emotion
from multichannel EEG signal. Egyptian Informatics Journal, 2020,
21(1): 23 -35.
[8] TIBDEWAL M N, TALE S
A. Multichannel detection of epilepsy using SVM classifier on
EEG signal. Proceedings of the 2016 International Conference
on Computing Communication Control and Automation ( ICCUBEA’17), 2016, Aug 12 - 13, Pune, India. Piscataway, NJ,
USA: IEEE, 2016: 1 -6.
[9] LIN W Q, LI C, SUN S
Q. Deep convolutional neural network for emotion recognition using
EEG and peripheral physiological signal. Proceedings of the
International Conference on Image and Graphics ( ICIG’17), 2017, Sep 13 - 15, Shanghai, China. LNIP 10667. Berlin,
Germany: Springer, 2017: 385 -394.
[10] LIU N J, FANG Y C, LI
L, et al. Multiple feature fusion for automatic emotion
recognition using EEG signals. Proceedings of the 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’18), 2018, Apr 15 - 20, Calgary, Canada. Piscataway, NJ,
USA: IEEE, 2018: 896 -900.
[11] KHOSROWABADI R, QUEK
C, ANG K K, et al. ERNN: a biologically inspired
feedforward neural network to discriminate emotion from EEG signal.
IEEE Transactions on on Neural Networks and Learning
Systems, 2014, 25(3): 609 -620.
[12] HASSAN M M, ALAM M G
R, UDDIN M Z, et al. Human emotion recognition using
deep belief network architecture. Information Fusion, 2019,
51: 10 -18.
[13] LI Y J, HUANG J J,
ZHOU H Y, et al. Human emotion recognition with
electroencephalographic multidimensional features by hybrid deep neural
networks. Applied Sciences, 2017, 7(10): Article 1060.
[14] Li X, SONG D W, ZHANG
P, et al. Emotion recognition from multi-channel EEG data
through convolutional recurrent neural network. Proceedings of
the 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM’16), 2016, Dec 15 - 18, Shenzhen, China.
Piscataway, NJ, USA: IEEE, 2017: 352 -359.
[15] SONG T F, ZHENG W M,
SONG P, et al. EEG emotion recognition using
dynamical graph convolutional neural networks. IEEE Transactions on
Affective Computing, 2020, 11(3): 532 - 541.
[16] MOON S E, JANG S, LEE
J S. Convolutional neural network approach for eeg-based
emotion recognition using brain connectivity and its spatial
information. Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’18), 2018, Apr 15 -20, Calgary, Canada. Piscataway, NJ, USA: IEEE,
2018: 2556 -2560.
[17] KOELSTRA S, YAZDANI
A, SOLEYMANI M, et al. Single trial classification of EEG and
peripheral physiological signals for recognition of emotions
induced by music videos. Proceedings of the International
Conference on Brain Informatics (BI’10), 2010, Aug 28 - 30, Toronto,
Canada. LNAI 6334. Berlin, Germany: Springer, 2010: 89 -100.
[18] RUSSELL J A, LEWICKA
M, NIIT T. A cross-cultural study of a circumplex model of affect.
Journal of Personality and Social Psychology, 1989, 57(5):
848 -856.
[19] IWAKI T, NOSHIRO M.
EEG activity over frontal regions during positive and negative
emotional experience. Proceedings of the 2012 ICME International
Conference on Complex Medical Engineering? ( CME’12 ), 2012, Jul 1 - 4, Kobe, Japan. Piscataway, NJ, USA: IEEE,
2012: 418 -422.
[20] LI X, ZHANG P, SONG D
W, et al. EEG based emotion identification using
unsupervised deep feature learning. Proceedings of the 38th
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ‘15), 2015, Aug 9 - 13,
Santiago, Chile. New York, NY, USA: ACM, 2015: 1 -3.
[21] ATKINSON J, CAMPOS D.
Improving BCI-based emotion recognition by combining
EEG feature selection and kernel classifiers. Expert
Systems with Applications, 2016, 47: 35 -41.
[22] TANG H, LIU W, ZHENG
W L, et al. Multimodal emotion recognition using deep
neural networks. Proceedings of the 24th International Conference
on Neural Information Processing (CONIP’17), 2017, Oct 14 - 18, Guangzhou, China. LNTCS 10637. Berlin, Germany:
Springer, 2017: 811 -819.
[23] XING X F, LI Z Q, XU
T Y, et al. SAE + LSTM: a new framework for emotion
recognition from multi-channel EEG. Frontiers in
Neurorobotics, 2019, 13: Article 37.
[24] CHEN J X, JIANG D M,
ZHANG Y N, et al. Emotion recognition from spatiotemporal EEG
representations with hybrid convolutional recurrent neural networks
via wearable multi-channel headset. Computer Communications,
2020, 154: 58 -65.
[25] JADHAV N, MANTHALKAR
R, JOSHI Y. Electroencephalo-graphy-based emotion
recognition using gray-level co-occurrence matrix features.
Proceedings of the 2016 International Conference on Computer Vision and
Image Processing ( CVIP’16): Vol 1, 2016, Feb 26 - 28, Roorkee,
India. AISC 459. Berlin, Germany: Springer, 2016:
335 -343.
[26] MEI H, XU X M. EEG-based
emotion classification using convolutional neural
network. Proceedings of the 2017 International Conference
on Security, Pattern Analysis, and Cybernetics (SPAC’17), 2017, Dec 15 - 17, Shenzhen, China. Piscataway, NJ, USA: IEEE,
2017: 130 -135.
[27] KWON Y H, SHIN S B,
KIM S D. Electroencephalography based fusion two-dimensional
(2D)-convolution neural networks (CNN) model for emotion
recognition system. Sensors, 2018, 18 (5): Article 1383.
[28] CIMTAY Y, EKMEKCIOGLU
E. Investigating the use of pretrained convolutional
neural network on cross-subject and cross-dataset EEG emotion
recognition. Sensors, 2020, 20(7): Article 2034.
[29] CHO J C, HWANG H.
Spatio-temporal representation of an electoencephalogram for
emotion recognition using a three-dimensional convolutional
neural network. Sensors, 2020, 20(12): Article 3491.
|