References
[1] WANG Y, LIU M, YANG J, et al. Data-driven deep learning for
automatic modulation recognition in cognitive radios. IEEE
Transactions on Vehicular Technology, 2019, 68(4): 4074 -
4077.
[2] GHASEMZADEH P, BANERJEE S, HEMPEL M, et al. A novel
deep learning and polar transformation framework for an adaptive
automatic modulation classification. IEEE Transactions on
Vehicular Technology, 2020, 69(11): 13243 - 13258.
[3] ZHENG J P, LU Y F. Likelihood-based automatic modulation
classification in OFDM with index modulation. IEEE Transactions
on Vehicular Technology, 2018, 67(9): 8192 - 8204.
[4] HE Z M, PENG Y, ZHAO Y, et al. Deep learning-based
automatic modulation recognition algorithm in non-cooperative
communication systems. Proceedings of the 11th International
Conference on Wireless Communications and Signal Processing
(WCSP'19), 2019, Oct 23 - 25, Xi'an, China. Piscataway, NJ,
USA: IEEE, 2019: 1 - 6.
[5] DOBRE O A, ABDI A, BAR-NESS Y, et al. Survey of automatic
modulation classification techniques: Classical approaches and new
trends. IET Communications, 2007, 1(2): 137 - 156.
[6] LEE J H, KIM K Y, SHIN Y. Feature image-based automatic
modulation classification method using CNN algorithm.
Proceedings of the 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC'19),
2019, Feb 11 - 13, Okinawa, Japan. Piscataway, NJ, USA:
IEEE, 2019: 1 - 4.
[7] YANG C, HE Z M, PENG Y, et al. Deep learning aided method
for automatic modulation recognition. IEEE Access, 2019, 7:
109063 - 109068.
[8] KUMAR Y, SHEORAN M, JAJOO G, et al. Automatic
modulation classification based on constellation density using deep
learning. IEEE Communications Letters, 2020, 24(6): 1275 -
1278.
[9] SWAMI A, SADLER B M. Hierarchical digital modulation
classification using cumulants. IEEE Transactions on
Communications, 2000, 48(3): 416 - 429.
[10] YAN X, FENG G Y, WU H C, et al. Innovative robust
modulation classification using graph-based cyclic-spectrum
analysis. IEEE Communications Letters, 2017, 21(1): 16 -
19.
[11] HASSANPOUR S, PEZESHK A M, BEHNIA F. Automatic
digital modulation recognition based on novel features and support
vector machine. Proceedings of the 12th International Conference
on Signal-Image Technology and Internet-Based Systems
(SITIS'16), 2016, Nov 28 - Dec 1, Naples, Italy. Piscataway,
NJ, USA: IEEE, 2016: 172 - 177.
[12] MOHAMMADI M, MOUSAVI S H, EFFATI S. Generalized
variant support vector machine. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2021, 51(5): 2798 - 2809.
[13] PATIL S, KULKARNI U. Accuracy prediction for distributed
decision tree using machine learning approach. Proceedings of the
3rd International Conference on Trends in Electronics and
Informatics (ICOEI'19), 2019, Apr 23 - 25, Tirunelveli,
India. Piscataway, NJ, USA: IEEE, 2019: 1365 - 1371.
[14] GAVANKAR S S, SAWARKAR S D. Eager decision tree.
Proceedings of the 2nd International Conference for Convergence
in Technology (I2CT'17), 2017, Apr 7 - 9, Mumbai, India.
Piscataway, NJ, USA: IEEE, 2017: 837 - 840.
[15] YANG F Q, YANG L, WANG D, et al. Method of modulation
recognition based on combination algorithm of K-means clustering
and grading training SVM. China Communications, 2018,
15(12): 55 - 63.
[16] ASLAM M W, ZHU Z C, NANDI A K. Automatic modulation
classification using combination of genetic programming and
KNN. IEEE Transactions on Wireless Communications, 2012,
11(8): 2742 - 2750.
[17] O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio
modulation recognition networks. Engineering Applications of
Neural Networks: Proceedings of the 17th International
Conference on Engineering Applications of Neural Networks
(EANN'16), 2016, Sept 2 - 5, Aberdeen, UK. CCIS 629.
Cham, Switzerland: Springer, 2016: 213 - 226.
[18] RAMJEE S, JU S T, YANG D Y, et al. Fast deep learning for
automatic modulation classification. ArXiv: 1901. 05850, 2019.
[19] ZHANG Z F, LUO H, WANG C, et al. Automatic modulation
classification using CNN-LSTM based dual-stream structure.
IEEE Transactions on Vehicular Technology, 2020, 69(11):
13521 - 13531.
[20] SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional,
long short-term memory, fully connected deep neural networks.
Proceedings of the 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP'15), 2015,
Apr 19 - 24, South Brisbane, Australia. Piscataway, NJ, USA:
IEEE, 2015: 4580 - 4584.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning
for image recognition. Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR'16), 2016,
Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA:
IEEE, 2016: 770 - 778.
[22] CHEN H T, GUO L, DONG C, et al. Automatic modulation
classification using multi-scale convolutional neural network.
Proceedings of the IEEE 31st Annual International Symposium on
Personal, Indoor and Mobile Radio Communications
(PIMRC'20), 2020, Aug 31 - Sept 3, London, UK.
Piscataway, NJ, USA: IEEE, 2020: 1 - 6.
[23] WANG W B, TONG M, YU M. Blood glucose prediction with
VMD and LSTM optimized by improved particle swarm
optimization. IEEE Access, 2020, 8: 217908 - 217916.
[24] YU Y L, LIU F X. Effective neural network training with a new
weighting mechanism-based optimization algorithm. IEEE
Access, 2019, 7: 72403 - 72410.
[25] O'SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning
based radio signal classification. IEEE Journal of Selected Topics
in Signal Processing, 2018, 12(1): 168 - 179.
[26] O'SHEA T J, WEST N. Radio machine learning dataset
generation with GNU radio. Proceedings of the 6th GNU Radio
Conference (GRCon'16), 2016, Sept 12 - 16, Boulder, CO,
USA. 2016: 1 - 6.
[27] PENG S L, JIANG H Y, WANG H X, et al. Modulation
classification based on signal constellation diagrams and deep
learning. IEEE Transactions on Neural Networks and Learning
Systems, 2019, 30(3): 718 - 727.
[28] ZENG Y, ZHANG M, HAN F, et al. Spectrum analysis and
convolutional neural network for automatic modulation
recognition. IEEE Wireless Communications Letters, 2019,
8(3): 929 - 932.
[29] ZHANG M, ZENG Y, HAN Z D, et al. Automatic modulation
recognition using deep learning architectures. Proceedings of the
IEEE 19th International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC'18), 2018, Jun 25 - 28,
Kalamata, Greece. Piscataway, NJ, USA: IEEE, 2018: 1 - 5.
[30] TUNZE G B, HUYNH-THE T, LEE J M, et al. Sparsely
connected CNN for efficient automatic modulation recognition.
IEEE Transactions on Vehicular Technology, 2020, 69(12):
15557 - 15568.
[31] HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An
efficient CNN architecture for robust automatic modulation
classification. IEEE Communications Letters, 2020, 24(4):
811 - 815.
[32] KIM S H, KIM J W, DOAN V S, et al. Lightweight deep
learning model for automatic modulation classification in cognitive
radio networks. IEEE Access, 2020, 8: 197532 - 197541.
[33] WEST N E, O'SHEA T. Deep architectures for modulation
recognition. Proceedings of the 2017 IEEE International
Symposium on Dynamic Spectrum Access Networks
(DySPAN'17), 2017, Mar 6 - 9, Baltimore, MD, USA.
Piscataway, NJ, USA: IEEE, 2017: 1 - 6.
[34] MENG F, CHEN P, WU L N, et al. Automatic modulation
classification: A deep learning enabled approach. IEEE
Transactions on Vehicular Technology, 2018, 67(11): 10760 -
10772.
|