References
[1] CHENG N, XU W C, SHI W S, et al. Air-ground integrated
mobile edge networks: Architecture, challenges, and
opportunities. IEEE Communications Magazine, 2018, 56(8):
26 - 32.
[2] SAAD W, BENNIS M, CHEN M. A vision of 6G wireless
systems: Applications, trends, technologies, and open research
problems. IEEE Network, 2020, 34(3): 134 - 142.
[3] LETAIEF K B, CHEN W, SHI Y M, et al. The roadmap to 6G:
AI empowered wireless networks. IEEE Communications
Magazine, 2019, 57(8): 84 - 90.
[4] LU Y L, MAHARJAN S, ZHANG Y. Adaptive edge association
for wireless digital twin networks in 6G. IEEE Internet of Things
Journal, 2021, 8(22): 16219 - 16230.
[5] RODRIGUES T K, LIU J J, KATO N. Application of cybertwin
for offloading in mobile multiaccess edge computing for 6G
networks. IEEE Internet of Things Journal, 2021, 8(22):
16231 - 16242.
[6] KHAN A R, OTHMAN M, MADANI S A, et al. A survey of
mobile cloud computing application models. IEEE Communications
Surveys and Tutorials, 2014, 16(1): 393 - 413.
[7] ZHOU Z Y, FENG J H, TAN L, et al. An air-ground integration
approach for mobile edge computing in IoT. IEEE Communications
Magazine, 2018, 56(8): 40 - 47.
[8] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys and Tutorials, 2017, 19(4): 2322 -
2358.
[9] DAO N N, PHAM Q V, TU N H, et al. Survey on aerial radio
access networks: Toward a comprehensive 6G access
infrastructure. IEEE Communications Surveys and Tutorials,
2021, 23(2): 1193 - 1225.
[10] AGGARWAL S, KUMAR N, TANWAR S. Blockchain-envisioned UAV communication using 6G networks: Open issues,
use cases, and future directions. IEEE Internet of Things
Journal, 2021, 8(7): 5416 - 5441.
[11] CHIARAVIGLIO L, BLEFARI-MELAZZI N, LIU W, et al.
Bringing 5G into rural and low-income areas: Is it feasible? IEEE
Communications Standards Magazine, 2017, 1(3): 50 - 57.
[12] ZHOU F H, HU R Q, LI Z, et al. Mobile edge computing in
unmanned aerial vehicle networks. IEEE Wireless
Communications, 2020, 27(1): 140 - 146.
[13] LI B, FEI Z S, ZHANG Y. UAV communications for 5G and
beyond: Recent advances and future trends. IEEE Internet of
Things Journal, 2019, 6(2): 2241 - 2263.
[14] YANG Z H, PAN C H, WANG K Z, et al. Energy efficient
resource allocation in UAV-enabled mobile edge computing
networks. IEEE Transactions on Wireless Communications,
2019, 18(9): 4576 - 4589.
[15] MAO S, HE S F, WU J S. Joint UAV position optimization and
resource scheduling in space-air-ground integrated networks with
mixed cloud-edge computing. IEEE Systems Journal, 2021,
15(3): 3992 - 4002.
[16] JEONG S, SIMEONE O, KANG J. Mobile edge computing via a
UAV-mounted cloudlet: Optimization of bit allocation and path
planning. IEEE Transactions on Vehicular Technology, 2018,
67(3): 2049 - 2063.
[17] YIN S X, ZHAO S, ZHAO Y F, et al. Intelligent trajectory
design in UAV-aided communications with reinforcement
learning. IEEE Transactions on Vehicular Technology, 2019,
68(8): 8227 - 8231.
[18] FERDOWSI A, ABD-ELMAGID M A, SAAD W, et al. Neural
combinatorial deep reinforcement learning for age-optimal joint
trajectory and scheduling design in UAV-assisted networks. IEEE
Journal on Selected Areas in Communications, 2021, 39(5):
1250 - 1265.
[19] QU Y B, DAI H P, WANG H C, et al. Service provisioning for
UAV-enabled mobile edge computing. IEEE Journal on Selected
Areas in Communications, 2021, 39(11): 3287 - 3305.
[20] ANOKYE S, AYEPAH-MENSAH D, SEID A M, et al. Deep
reinforcement learning-based mobility-aware UAV content caching
and placement in mobile edge networks. IEEE Systems Journal,
2021, Early Access Article.
[21] ZHOU F S, WANG N, LUO G Y, et al. Edge caching in multi-UAV-enabled radio access networks: 3D modeling and spectral
efficiency optimization. IEEE Transactions on Signal and
Information Processing over Networks, 2020, 6: 329 - 341.
[22] ABBAS N, ZHANG Y, TAHERKORDI A, et al. Mobile edge
computing: A survey. IEEE Internet of Things Journal, 2018,
5(1): 450 - 465.
[23] YAO J J, HAN T, ANSARI N. On mobile edge caching. IEEE
Communications Surveys and Tutorials, 2019, 21(3): 2525 -
2553.
[24] ZHANG J, ZHOU L, TANG Q, et al. Stochastic computation
offloading and trajectory scheduling for UAV-assisted mobile edge
computing. IEEE Internet of Things Journal, 2019, 6(2):
3688 - 3699.
[25] WU H Q, LYU F, ZHOU C H, et al. Optimal UAV caching and
trajectory in aerial-assisted vehicular networks: A learning-based
approach. IEEE Journal on Selected Areas in Communications,
2020, 38(12): 2783 - 2797.
[26] MEI H B, WANG K Z, ZHOU D D, et al. Joint trajectory-task-cache optimization in UAV-enabled mobile edge networks for
cyber-physical system. IEEE Access, 2019, 7: 156476 -
156488.
[27] GRANT M, BOYD S. CVX: Matlab software for disciplined
convex programming, version 2. 1. CVX Research Inc, 2014.
[28] HUA M, WANG Y, LI C G, et al. UAV-aided mobile edge
computing systems with one by one access scheme. IEEE
Transactions on Green Communications and Networking, 2019,
3(3): 664 - 678.
[29] HU Q Y, CAI Y L, YU G D, et al. Joint offloading and
trajectory design for UAV-enabled mobile edge computing
systems. IEEE Internet of Things Journal, 2019, 6(2): 1879 -
1892.
[30] WANG Y T, SU Z, ZHANG N, et al. Learning in the air:
Secure federated learning for UAV-assisted crowdsensing. IEEE
Transactions on Network Science and Engineering, 2021, 8(2):
1055 - 1069.
|