References
1. Jovanov E, Milenkovic A, Otto C, et al. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of Neuroengineering and Rehabilitation, 2005, 2(1): 6p
2. Aragues A, Escayola J, Martiinez I, et al. Trends and challenges of the emerging technologies toward interoperability and standardization in e-health communications. IEEE Communications Magazine, 2011, 49(11): 182 -188
3. Dixon A M, Allstot E G, Gangopadhyay D, et al. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(2): 156 -166
4. Yazicioglu R F, Kim S, Torfs T, et al. A 30 uW analog signal processor ASIC for portable bio-potential signal monitoring. IEEE Journal of Solid-State Circuits, 2011, 46(1): 209 -223
5. Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289 -1306
6. Zhang Z, Jung T P, Makeig S, et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 2013, 60(2): 300 -309
7. Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements Communications on Pure and Applied Mathematics, 2006, 59(8): 1207 -1223
8. Zigel Y, Cohen A, Katz A. The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans Biomed Eng, 2000, 47(11): 1422 -1430
9. Polania L F, Carrillo R E, Blanco-Velasco M, et al. Compressed sensing based method for ECG compression. IEEE International Conference on Acoustics, Speech and Signal Processing, May 22 -27, 2011, Prague, Czech Republic, 2011: 761 -764
10. Gangopadhyay D, Allstot E G, Dixon A M R, et al. Compressed sensing analog front-end for bio-sensor applications. IEEE Journal of Solid-State Circuits, 2014, 49(2): 426 -438
11. Zhang H X, Chen C F, Wu T L, et al. Decomposition and compression for ECG and EEG signals with sequence index coding method based on matching pursuit. The Journal of China Universities of Posts and Telecommunications, 2012, 19(2): 92 -95
12. Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203 -4215
13. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Siam Review, 2001, 43(1): 129 -159
14. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655 -4666
15. Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2007, 4(2): 310 -316
16. Wei D, Milenkovic O. Subspace pursuit for compressive sensing: closing the gap between performance and complexity. IEEE Transactions on Information Theroy, 2008, 55(5): 2230 -2249
17. Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2009, 26(3): 301 -321
18. Zhang H X, Wang H Q, Li X M, et al. Implementation of compressive sensing in ECG and EEG signal processing. The Journal of China Universities of Posts and Telecommunications, 2010, 17(6): 122 -126
19. Do T T, Lu G, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. Signals, Systems and Computers, Asilomar Conference on. IEEE, Oct 26 -29, 2008, Pacific Grove, CA, USA, 2009: 581 -587
20. Clifford G D, Mcsharry P E. Method to filter ECGs and evaluate clinical parameter distortion using realistic ECG model parameter fitting Computers in Cardiology. IEEE, Sept 25 -28, 2005, Lyon, France, 2005: 715 -718
21. Moody G B, Mark R G. The impact of the MIT - BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 40 -45
22. Pan J, Tompkins W J. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230 -236
23. Raj S R, Bilas P R. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomedical Signal Processing and Control, 2018, 45: 33 -49
24. Stefanovska A, Bracic L M, Strle S, et al. The cardiovascular system as coupled oscillators? Physiological Measurement, 2001, 22(3): 535 -550
25. Mcsharry P E, Clifford G D, Tarassenko L, et al. A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Bio-Medical Engineering, 2003, 50(3): 289 -294
26. Zhang Z, Jung T, Makeig S, et al. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Transactions on Biomedical Engineering, 2013, 60(1): 221 -224
27. Mamaghanian H, Khaled N, Atienza D, et al. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Transactions on Bio-Medical Engineering, 2011, 58(9): 2456 -2466
28. Casson A J, Rodriguez-Villegas E. Signal agnostic compressive sensing for body area networks: comparison of signal reconstructions. Engineering in Medicine and Biology Society. IEEE, Aug 28 -Sept 1, 2012, San Diego, CA, USA, 2012: 4497 -4500
29. Chae D H, Alem Y F, Durrani S, et al. Performance study of compressive sampling for ECG signal compression in noisy and varying sparsity acquisition. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, May 26 -31, 2013, Vancouver, BC, Canada, 2013: 1306 -1309
30. Ansari-Ram F, Hosseini-Khayat S. ECG signal compression using compressed sensing with nonuniform binary matrices. The 16th CSI International Symposium on Artificial Intelligence and Signal Processing. IEEE, May 02 -03, 2012, Shiraz, Fars, Iran, 2012: 305 -309 |