1. Mark S, David S, Frederic V, et al. Resource allocation algorithms for virtualized service hosting platforms. Journal of Parallel and Distributed Computing, 2010, 70(9): 962-974 2. Adnan A, Keijo H, Johan L, et al. Introduction to cloud computing technologies in Developing Cloud Software: Algorithms, Applications, and Tools, Finland: Turku Centre for Computer Science (TUCS) General Publication, 2013, 60: 1–41 3. Michael C, Aameek S, Himabindu P, et al. Exploiting Spatio-Temporal Tradeoffs for Energy-Aware MapReduce in the Cloud. Proceedings of the 4th International Conference on Cloud Computing, 2011: 251-258. 4. Ching C T M, Dusit N, Tham C K. Evolutionary Optimal Virtual Machine Placement and Demand Forecaster for Cloud Computing. Proceedings of the IEEE International Conference on Advanced Information Networking and Applications, IEEE Computer Society, 2011:348-355 5. Chen M, Zhang H, Su Y Y, et al. Effective VM sizing in virtualized data centers. Proceedings of the IEEE International Symposium on Integrated Network Management, May 23-27, Dublin, Ireland, 2011: 594 - 601 6. Rimal B P, Jukan A, Katsaros D, et al. Architectural requirements for cloud computing systems: An enterprise cloud approach. Journal of Grid Computing, 2011, 9(1): 3–26 7. Paya A, Dan C M. Energy-Aware Load Balancing and Application Scaling for the Cloud Ecosystem. IEEE Transactions on Cloud Computing, 2017, 5(1):15-27 8. Mainak A, Tarachand A. Heuristic-based load-balancing algorithm for IaaS cloud. Future Generation Computer Systems, 2018, 81(2018): 156-165 9. Altaf H, Muhammad A, Abid K et al. RALBA: a computation-aware load balancing scheduler for cloud computing. Cluster Computing, 2018, 21(3): 1667-1680. 10. Fu X, Chen J, Deng S, et al. Layered virtual machine migration algorithm for network resource balancing in cloud computing. Frontiers of Computer Science, 2018, 12(1): 75-85. 11. Fu X, Zhou C. Virtual machine selection and placement for dynamic consolidation in cloud computing environment. Frontiers of Computer Science, 2015, 9(2): 322-330 12. Yang X, Zhang H, Ma H, et al. Multi-resource allocation for virtual machine placement in video surveillance cloud. Proceedings of the International Conference on Human Centered Computing, 2016: 544-555 13. Li X, Qian Z, Lu S, Wu J. Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Mathematical & Computer Modelling, 2013, 58(5-6): 1222-1235 14. Hu Z, Li B, Luo J. Flutter:Scheduling tasks closer to data across geo-distributed datacenters. Proceedings of the 35th Annual IEEE International Conference on Computer Communications, April 10-14, San Francisco, CA, 2016:1-9. 15. Cao Z, Dong S. Dynamic VM consolidation for energy-aware and SLA violation reduction in cloud computing. Proceedings of the 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, 2012:363-369 16. Cui Y, Yang Z, et al. Traffic-aware virtual machine migration in topology-adaptive DCN. Proceedings of the 24th International Conference on Network Protocols (ICNP), Singapore, 2016: 1-10 17. Baccarelli E, Amendola D, Cordeschi N. Minimum-energy bandwidth management for QoS live migration of virtual machines. Computer Networks, 2015, 93(P1):1-22 18. Cordeschi N, Shojafar M, Amendola D, et al. Energy-e?cient adaptive networked datacenters for the QoS support of real-time applications. Journal of Supercomputing, 2015, 71(2):448–478 19. Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 2011, 41(1): 23–50 20. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance e?cient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 2012, 24(13): 1397–1420 |