References
1. Xue N, Shen L. Chinese word segmentation as LMR tagging. Proceedings of the Second SIGHAN Workshop on Chinese Language Processing-Volume 17. Association for Computational
Linguistics, 2003: 176 -179
2. Peng F, Feng F, McCallum A. Chinese segmentation and new word detection using conditional random fields. Proceedings of the 20th International Conference on Computational Linguistics. Association for Computational Linguistics, 2004: 562 -568
3. Chen X, Qiu X, Zhu C, et al. Long short-term memory neural networks for Chinese word segmentation. Conference on Empirical Methods in Natural Language Processing, 2015: 1197 -1206
4. Zheng X, Chen H, Xu T. Deep learning for Chinese word segmentation and POS tagging. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013: 647 -657
5. Li Z, Sun M. Punctuation as implicit annotations for Chinese word segmentation. Computational Linguistics, 2009, 35 (4): 505 -512
6. Huang J, Hou H. A research on punctuation pattern of ancient agricultural text. Journal of Chinese Information, 2008, 22(4): 31 -38 (in Chinese)
7. Chen T, Chen R, Pan L, et al. Sentence segmentation in ancient Chinese based on N-gram model. Computer Engineering, 2007, 33(3): 192 -193 (in Chinese)
8. Zhang K, Xia Y, Yu H. An ancient Chinese punctuation and sentence marking method based on cascaded CRF. Computer Application Research, 2009(10): 40p (in Chinese)
9. Huang H H, Sun C T, Chen H H. Classical Chinese sentence segmentation. CIPS-SIGHAN Joint Conference on Chinese Language Processing, 2010
10. Wang B, Shi X, Tan Z, et al. A sentence segmentation method for ancient Chinese texts based on NNLM. The Workshop on Chinese Lexical Semantics. Springer International Publishing, 2016: 387 -396
11. Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, 1985
12. Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. Journal of Machine Learning Research, 2003, 3(2): 1137 -1155
13. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735 -1780
14. Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures. International Conference on Machine Learning, 2015: 2342 -2350
15. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. International Conference on Machine Learning, 2013: 1310 -1318
16. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. ArXiv Preprint ArXiv: 1508. 01991, 2015
17. Ma X, Hovy E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. ArXiv Preprint ArXiv: 1603. 01354, 2016
18. Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition. ArXiv Preprint ArXiv: 1603. 01360, 2016
19. Shao Y, Hardmeier C, Tiedemann J, et al. Character-based joint segmentation and POS tagging for Chinese using bidirectional RNN-CRF. ArXiv Preprint ArXiv: 1704. 01314, 2017
20. Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 2011, 12(8): 2493 -2537
21. Compilation of Xinhua Dictionary. Xinhua dictionary. 10th edition. Commercial Press, 2004 (in Chinese)
22. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. ArXiv Preprint ArXiv: 1301. 3781, 2013 |