References
1. Huang J H, Liu J. A similarity-based modularization quality measure for software module clustering problems. Information Sciences, 2016, 342(C): 96 -110
2. Bishnoi M, Singh P. Modularizing software systems using PSO optimized hierarchical clustering. International Conference on Computational Techniques in Infor-mation and Communication Technologies, March 11 - 13, 2016, New Delhi, India. USA: IEEE, 2016: 659 -664
3. Ma Y T, He K Q, Li B, et al. Empirical study on the characteristics of complex networks in networked software. Journal of Software, 2011, 22(3): 381 -407 (in Chinese)
4. Potanin A, Noble J, Frean M, et al. Scale-free geometry in object-oriented programs. Communications of the ACM, 2005, 48(5): 99 -103
5. Gialampoukidis I, Tsikrika T, Vrochidis S, et al. Community detection in complex networks based on DBSCAN* and a martingale process. International Workshop on Semantic and Social
Media Adaptation and Personalization, Oct 20 - 21, 2016, Thessaloniki, Greece. USA: IEEE, 2016
6. Kumari A C, Srinivas K, Gupta M P. Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. Advance Computing Conference, Feb 22 - 23, 2013, Ghaziabad, India. USA: IEEE, 2013: 813 -818
7. Myers C R. Software systems as complex networks: structure, function, and evolvability of software collaboration graphs. Physical Review E, 2003, 68(2): 352 -375
8. Mitchell B S. A heuristic approach to solving the software clustering problem. International Conference on Software Maintenance, Sept 22 -26, 2003, Amsterdam, The Netherlands.
Washington, DC, USA: IEEE, 2003: 285
9. Mancoridis S, Mitchell B S, Rorres C, et al. Using automatic clustering to produce high-level system organizations of source code. Proceesings 6th International Workshop on Program
Comprehension, June 26,1998, Ischia, Italy: IEEE, 1998: 45 -52
10. Harman M. The current state and future of search-based software engineering. Future of Software Engineering, May 23 -25, 2007, Minneapolis, MN. Washington, DC, USA: IEEE, 2007: 342 -357
11. Mitchell B S, Mancoridis S. On the automatic modularization of software systems using the bunch tool. IEEE Transactions on Software Engineering, 2006, 32(3): 193 -208
12. Bavota G, Gethers M, Oliveto R, et al. Improving software modularization via automated analysis of latent topics and dependencies. ACM Transactions on Software Engineering and
Methodology, 2014, 23(1): 4
13. Harman M, Hierons R M, Proctor M. A new representation and crossover operator for search-based optimization of software modularization. Genetic and Evolution-ary Computation
Conference. July 9 - 13, 2002, New York, NY, USA. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2002: 1351 -1358
14. Charankumari A, Srinivas K. Software module clustering using a fast multi-objective hyper-heuristic evolutionary algorithm. Research. ijais. org, 2014, 5(6): 12 -18
15. Maashi M, Ozcan E, Kendall G. A multi-objective hyper-heuristic based on choice function. Expert Systems with Applications, 2014, 41(9): 4475 -4493
16. Liu C, Liu J, Jiang Z. A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Trans Cybern, 2014, 44(12): 2274 -2287
17. Mahdavi K, Harman M, Hierons R. Finding building blocks for software clustering. Genetic and Evolutionary Computation-GECCO 2003, Genetic and Evolution-ary Computation Conference, July 12 -16, 2003, Chicago, Il, USA. Berlin Heidelberg: Springer-Verlag, 2003: 2513 -2514
18. Mahdavi K, Harman M, Hierons R M. A multiple hill climbing approach to software module clustering. International Conference on Software Maintenance, 2003, ICSM 2003 Proceedings, Sept 22 -26, 2003, Amsterdam, The Netherlands. Washington, DC, USA: IEEE, 2003: 315 -324
19. Hussain I, Khanum A, Abbasi A Q, et al. A novel approach for software architecture recovery using particle swarm optimization. International Arab Journal of In-formation Technology, 2015, 12(1): 32 -41
20. Praditwong K, Yao X. A new multi-objective evolutionary optimization algorithm: the two-archive algorithm. International Conference on Computational Intelli-gence and Security, Nov 3 -6, 2006, Guangzhou, China: IEEE, 2006: 286 -291
21. Praditwong K. Solving software module clustering problem by evolutionary algorithms. Eighth International Joint Conference on Computer Science and Software Engineering, May 11 -13, 2011, Nakhon Pathom, Thailand: IEEE, 2011: 154 -159
22. Praditwong K, Harman M, Yao X. Software module clustering as a multi-objective search problem. IEEE Transactions on Software Engineering, 2011, 37(2): 264 -282
23. Harman M, Swift S, Mahdavi K. An empirical study of the robustness of two module clustering fitness functions. Genetic and Evolutionary Computation Conference, GECCO 2005 Proceedings, June 25 - 29, 2005, Washington DC. New York, NY, USA: ACM, 2005: 1029 -1036
24. Li Z, Zhang S, Wang R S, et al. Quantitative function for community detection. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2008, 77(1 -9): 036109
25. Zhang C, Shen H Z. Modularity function for community structure based on natural density of networks. Journal of University of Electronic Science and Technology of China, 2012, 2(2): 185 -191 (in Chinese)
26. Qian G Q. Modeling method and characteristics analysis of software dependency networks. Computer Science, 2008, 35(11): 239 -243 (in Chinese)
27. Pan W, Li B, Ma Y, et al. Multi-granularity evolution analysis of software using complex network theory. Journal of Systems Science and Complexity, 2011, 24(6): 1068 -1082
28. Pan W F, Li B, Ma Y T, et al. Measuring structural quality of object-oriented software via bug propagation analysis on weighted software networks. Journal of Computer Science and Technology, 2010, 25(6): 1202 -1213
29. Sun J Z, Ling B L. Software module clustering algorithm using probability selection. Wuhan University Journal of Natural Sciences, 2018, 23(2): 93 -102
30. Huang J H, Liu J, Yao X. A multi-agent evolutionary algorithm for software module clustering problems. Soft Computing, 2017, 21(12): 3415 -3428
31. Cui Z, Zeng J. A guaranteed global convergence particle swarm optimizer. Journal of Computer Research and Development, 2004, 3066(8): 762 -767 (in Chinese) |