References
1. Junni Z, Qiong W, Hongkai X, et al. Dynamic spectrum access and power allocation for cooperative cognitive radio networks. IEEE Transactions on Signal Processing, 2015, 63(21): 5637 -5649
2. Erik A, Geert L, Erik G L, et al. Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Processing Magazine, 2012, 29(3): 101 -116
3. Yang L, Sudharman K J. Dynamic spectrum tracking using energy and cyclostationarity-based multi-variate non-parametric quickest detection for cognitive radios. IEEE Transactions on Wireless Communications, 2013, 12(7): 3522 -3532
4. Qin Z Q, Wang J L, Chen J, et al. Adaptive compressed spectrum sensing based on cross validation in wideband cognitive radio system. IEEE Systems Journal, 2015(99): 1 -10
5. Matthew L M, Robert D N. Near-optimal adaptive compressed sensing. IEEE Transactions on Information Theory, 2014, 60(7): 4001 -4012
6. Bi D J, Xie Y L, Li X F, et al. A sparsity basis selection method for compressed sensing. IEEE Signal Processing Letters, 2015, 22(10): 1738 -1742
7. Liu C, Xi F, Chen S Y, et al. Pulse-doppler signal processing with quadrature compressive sampling. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1217 -1230
8. Moshe M, Yonina C E. From theory to practice: sub-nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375 -391
9. Jeffery D B, Miceal C, David H, et al. Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing, 2014, 62(7): 1694 -1704
10. Thomas S. Measure what should be measured: progress and challenges in compressive sensing. IEEE Signal Processing Letters, 2012, 19(12): 887 -893
11. Micheal E. Sparse and redundant representation modeling-what next? IEEE Signal Processing Letters, 2012, 19(12): 922 -928
12. David L D, Yaakov T, Iddo D, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory,
2012, 58(2): 1094 -1121
13. Martin B, Micheal M, Martin B, et al. An adaptive inverse scale space method for compressed sensing. Mathematics of Computation, 2013, 281(82): 269 -299
14. Mark A D, Petros T B, Micheal B W, et al. Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 445 -460
15. Mark A D. Random observations on random observations: sparse signal acquisition and processing. Dissertations and Theses-Gradworks, Rice University, 2010
16. Ding G R, Wu Q H, Yao Y D, et al. Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions. IEEE Signal Processing Magazine, 2013, 30(4): 126 -136
17. Thakshila W, Pramod K V. Wireless compressive sensing over fading channels with distributed sparse random projections. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(1): 33 -44
18. Ye C X, Suhans M, Alex R, et al. Information-theoretically secret key generation for fading wireless channels. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 240 -254
19. Fan R F, Jiang H. Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 2010, 9(3): 1128 -1138 |