[1] HAN Y N. Principles and outlook of filtering cables. Safety and Electromagnetic Compatibility, 2024(1): 22 - 30 ( in Chinese).
[2] HAN Y N, LIU Z H, ZHANG C W, et al. A flexible microstrip low-pass filter design using asymmetric Pi-shaped DGS. IEEE Access, 2019, 7: 49999 - 50006.
[3] HAN Y N, YANG B, GUO Q. Design of low-pass filters with ultra-wide stopband using asymmetric DGS. Proceedings of the 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, Aug 5 - 9, Denver, CO, USA. Piscataway, NJ, USA: IEEE, 2013: 636 - 639.
[4] TING S W, TAM K W, MARTINS R P. Miniaturized microstrip low-pass filter with wide stopband using double equilateral U- shaped defected ground structure. IEEE Microwave and Wireless Components Letters, 2006, 16(5): 240 - 242.
[5] CHEN H J, HUANG T H, CHANG C S, et al. A novel cross- shape DGS applied to design ultra-wide stopband low-pass filters. IEEE Microwave and Wireless Components Letters, 2006, 16(5): 252 - 254.
[ 6] LIM J S, KIM C S, AHN D, et al. Design of low-pass filters using defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(8): 2539 - 2545.
[7] WENG R M, CHENG S M, HSIAO P Y, et al. An ultra-wide stopband lowpass filter using a cross-diapason-shaped defected ground structure. Proceedings of the 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2008, Jan 23 - 25, Orlando, FL, USA. Piscataway, NJ, USA: IEEE, 2008: 143 - 146.
[8] WEN Z L, HAN Y N, SUN X Y, et al. Design of miniaturized low-pass filter with improved Koch fractal DGS. Proceedings of the 5th International Symposium on Electromagnetic Compatibility ( EMC-Beijing’17 ), 2017, Oct 28 - 31, Beijing, China. Piscataway, NJ, USA: IEEE, 2017: 4p.
[9] HAN Y N, JIANG C L, XIONG S Q, et al. Filter cable design with defected conductor transmission structures. Communications Engineering, 2024, 3: Article 111.
[10] HAN Y N, ZHANG X, LIU Z H, et al. Research on differential signal wideband common-mode suppression filtering cable. Proceedings of the 7th International Symposium on Electromagnetic Compatibility ( ISEMC’23 ), 2023, Oct 20 - 23, Hangzhou, China. Piscataway, NJ, USA: IEEE, 2023: 3p.
[11] HAN Y N, HE L R, LIU Z H, et al. A tunable bandstop filtering cable for wide-bandwidth interference suppression. Proceedings of the 7th International Symposium on Electromagnetic Compatibility ( ISEMC’23 ), 2023, Oct 20 - 23, Hangzhou, China. Piscataway, NJ, USA: IEEE, 2023: 3p.
[12] SHARMA S K, ZHOU D, LUTTGEN A, et al. A micro copper mesh-based optically transparent triple-band frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 202 - 206.
[13] TAI T C, WU H W, LIN K J, et al. New transparent bandpass filter using aluminum thin-film micromesh structure. IEEE Access, 2019, 7: 130215 - 130220.
[14] WANG J C, GUAN Y F, YU H, et al. Transparent graphene microstrip filters for wireless communications. Journal of Physics D: Applied Physics, 2017, 50(34): Article 34LT01.
[15] PAKDIN M, GHAYEKHLOO A, REZAEI P, et al. Transparent dual band Wi-Fi filter for double glazed energy saving window as a smart network. Microwave and Optical Technology Letters, 2019, 61(11): 2545 - 2550.
[16] LIU Z H, HAN Y N, QIU X B, et al. A novel translucent lowpass filter design using asymmetric Pi-shaped DGS. Proceedings of the 7th International Symposium on Electromagnetic Compatibility ( ISEMC’23 ), 2023, Oct 20 - 23, Hangzhou, China. Piscataway, NJ, USA: IEEE, 2023: 3p.
[17] POZAR M D. Microwave Engineering. 3rd edition. New York, NY, USA: John Wiley & Sons, 2005: 212.
|