[1] LI G H, MANDAL S K, OGRAS U Y, et al. FLASH: fast neural architecture search with hardware optimization. ACM Transactions on Embedded Computing Systems, 2021, 20(5S): 1 - 26.
[2] PAN X Y, CAO Y, JIA R, et al. Overview of neural network architecture search development. Journal of Xi’an University of Posts and Telecommunications, 2022, 27 ( 4 ): 43 - 63 ( in Chinese).
[3] DAHL G E, YU D, DENG L, et al. Context-dependent pre- trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 30 - 42.
[4] ZHANG K N, ZHAO S, SUN Q B, et al. Design of CNN accelerator with multi-core based on FPGA. Computer Engineering and Design, 2021, 42(6): 1592 - 1598 ( in Chinese).
[5] SATEESAN A, SINHA S, SMITHA K G, et al. A survey of algorithmic and hardware optimization techniques for vision convolutional neural networks on FPGAs. Neural Processing Letters, 2021, 53: 2331 - 2377.
[6] MA Y F, CAO Y, VRUDHULA S, et al. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks. Proceedings of the 2017 ACM / SIGDA International Symposium on Field-Programmable Gate Arrays ( FPGA’17 ), 2017, Feb 22 - 24, Monterey, CA, USA. New York, NY, USA: ACM, 2017: 45 - 54.
[7] YIN S Y, OUYANG P, TANG S B, et al. A high energy efficient reconfigurable hybrid neural network processor for deep learning applications. IEEE Journal of Solid-State Circuits, 2018, 53(4): 968 - 982.
[8] SHAN R, GAO X, FENG Y N, et al. Design and implementation of near-memory computing array architecture based on shared buffer. High Technology Letters, 2022, 28(4): 345 - 353.
[9] LU J M, LIN J, WANG Z F. A reconfigurable DNN training accelerator on FPGA. Proceedings of the 2020 IEEE Workshop on Signal Processing Systems ( SiPS’20 ), 2020, Oct 20 - 22, Coimbra, Portugal. Piscataway, NJ, USA: IEEE, 2020: 6p.
[10] WU C B, WANG C S, HSIAO Y K. Reconfigurable hardware architecture design and implementation for AI deep learning accelerator. Proceedings of the IEEE 9th Global Conference on Consumer Electronics ( GCCE’20 ), 2020, Oct 13 - 16, Kobe, Japan. Piscataway, NJ, USA: IEEE, 2020: 154 - 155.
[11] LI J X, UN K F, YU W H, et al. An FPGA-based energy- efficient reconfigurable convolutional neural network accelerator for object recognition applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(9): 3143 - 3147.
[12] ZHANG C, SUN G Y, FANG Z M, et al. Caffeine: toward uniformed representation and acceleration for deep convolutional neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2072 - 2085.
[ 13 ] YUAN Z, LIU Y P, YUE J S, et al. STICKER: an energy-efficient multi-sparsity compatible accelerator for convolutional neural networks in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55(2): 465 - 477.
[14] CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: an energy- efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127 - 138.
[15] JO J, CHA S, RHO D, et al. DSIP: a scalable inference accelerator for convolutional neural networks. IEEE Journal of Solid-State Circuits, 2018, 53(2): 605 - 618.
|