[1] JULISCH K. Mining alarm clusters to improve alarm handling efficiency. Proceedings of the 17th Annual Computer Security Applications Conference, 2001, Dec 10 -14, New Orleans, LA, USA. Piscataway, NJ, USA: IEEE, 2001: 12 -21.
[2] SHANECK M, CHANDOLA V, LIU H Y, et al. A multi-step framework for detecting attack scenarios. TR 06-004. Minneapolis, MN, USA: University of Minnesota, 2006.
[3] CHEN B, LEE J, WU A S. Active event correlation in Bro IDS to detect multi-stage attacks. Proceedings of the 4th IEEE International Workshop on Information Assurance ( IWIA'06 ), 2006, Apr 13 -14, London, UK. Piscataway, NJ, USA: IEEE, 2006: 50 -64.
[4] ZHU B, GHORBANI A A. Alert correlation for extracting attack strategies. International Journal of Network Security, 2006, 3(3): 244 -258.
[5] WANG J X, WANG H Z, ZHAO G. A GA-based solution to an NP-hard problem of clustering security events. Proceedings of the 2006 International Conference on Communications, Circuits and Systems Proceedings: Vol 3, 2006, Jun 25 -28, Guilin, China.
Piscataway, NJ, USA: IEEE, 2006: 2093 -2097.
[6] CHENG B C, LIAO G T, HUANG C C, et al. A novel probabilistic matching algorithm for multi-stage attack forecasts. IEEE Journal on Selected Areas in Communications, 2011, 29(7): 1438 -1448.
[7] MANGANIELLO F, MARCHETTI M, COLAJANNI M. Multistep attack detection and alert correlation in intrusion detection systems. Proceedings of the 2011 International Conference on Information Security and Assurance (ISA'11), 2011, Aug 15 -17, Brno, Czech. CCIS200. Berlin, Germany: Springer, 2011: 101 -110.
[8] XU D B, NING P. Alert correlation through triggering events and common resources. Proceedings of the 20th Annual Computer Security Applications Conference, 2004, Dec 6 - 10, Tucson, AZ, USA. Piscataway, NJ, USA: IEEE, 2004: 360 -369. [9] CHEUNG S, LINDQVIST U, FONG M W. Modeling multistep cyber attacks for scenario recognition. Proceedings of the 2003 DARPA Information Survivability Conference and Exposition: Vol 1, 2003, Apr 22 -24, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2003: 284 -292.
[10] ALSERHANI F, AKHLAQ M, AWAN I U, et al. MARS: multi-stage attack recognition system. Proceedings of the 24th IEEE
International Conference on Advanced Information Networking and Applications, 2010, Apr 20 - 23, Perth, Australia. Piscataway,
NJ, USA: IEEE, 2010: 753 -759.
[11] GEIB CW, GOLDMAN R P. Plan recognition in intrusion detection systems. Proceedings of the 2001 DARPA Information
Survivability Conference and Exposition II(DISCEX'01): Vol 1, 2001, Jun 12 -14, Anaheim, CA, USA. Piscataway, NJ,USA:
IEEE, 2001: 46 -55.
[12] QIN X Z, LEE W. Attack plan recognition and prediction using causal networks. Proceedings of the 20th Annual Computer
Security Applications Conference, 2004, Dec 6 - 10, Tucson, AZ, USA. Piscataway, NJ, USA: IEEE, 2004: 370 -379.
[13] OURSTON D, MATZNER S, STUMP W, et al. Applications of hidden Markov models to detecting multi-stage network attacks.
Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003, Jan 6 - 9, Big Island, HI, USA. Piscataway, NJ, USA: IEEE, 2003: 1 -10.
[14] FENG X W, WANG D X, HUANG M H, et al. An approach of discovering causal knowledge for alert correlating based on data mining. Proceedings of the IEEE 12th International Conference on Dependable, Autonomic and Secure Computing ( DASC'12 ),
2014, Aug 24 - 27, Dalian, China. Piscataway, NJ, USA: IEEE, 2014: 57 -62.
[15] BYERS S R, YANG S J. Real-time fusion and projection of network intrusion activity. Proceedings of the 11th International Conference on Information Fusion, 2008, Jun 30 - Jul 3, Cologne, Germany. Piscataway, NJ, USA: IEEE, 2008: 1 -8.
[16] FAVA D S, BYERS S R, YANG S J. Projecting cyberattacks through variable'length Markov models. IEEE Transactions on
Information Forensics and Security, 2008, 3(3): 359 -369.
[17] YANG S J, BYERS S, HOLSOPPLE J, et al. Intrusion activity projection for cyber situational awareness. Proceedings of the 2008
IEEE International Conference on Intelligence and Security Informatics, 2008, Jun 17 -20, Taipei, China. Piscataway, NJ, USA: IEEE, 2008: 167 -172.
[18] NOEL S, ROBERTSON E, JAJODIA S. Correlating intrusion events and building attack scenarios through attack graph distances. Proceedings of the 20th Annual Computer Security Applications Conference, 2004, Dec 6 -10, Tucson, AZ, USA. Piscataway, NJ, USA: IEEE, 2004: 350 -359.
[19] CHIEN S H, HO C S. A novel threat prediction framework for network security. ZENG D H ( ed). Advances in Information Technology and Industry Applications. LNEE136. Berlin, Germany: Springer, 2012: 1 -9.
[20] ZHANG R, HUO Y Y, LIU J Y, et al. Constructing APT attack scenarios based on intrusion kill chain and fuzzy clustering. Security and Communication Networks, 2017: Article 7536381.
[21] VASILOMANOLAKIS E, SRINIVASA S, CORDERO C G, et al. Multi-stage attack detection and signature generation with ICS honeypots. Proceedings of the 2016 IEEE/ IFIP Network Operations and Management Symposium (NOMS'16), 2016, Apr 25 -29, Istanbul, Turkey. Piscataway, NJ, USA: IEEE, 2016: 1227 -1232.
[22] SALAH S, MACIÁ-FERNÁNDEZ G, DÍAZ-VERDEJO J E. A model-based survey of alert correlation techniques. Computer Networks, 2013, 57(5): 1289 -1317.
[23] FARHADI H, AMIRHAERI M, KHANSARI M. Alert correlation and prediction using data mining and HMM. The ISC International
Journal of Information Security, 2011, 3(2): 77 -101.
[24] SHITTU R O. Mining intrusion detection alert logs to minimise false positives & gain attack insight. Ph D Thesis. London, UK:
City University London, 2016.
|