[1] KRIM H, VIBERG M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing
Magazine, 1996, 13(4): 67 -94.
[2] ZOU D Y, MENG W X, HAN S, et al. Toward ubiquitous LBS: multi-radio localization and seamless positioning. IEEE Wireless
Communications, 2016, 23(6): 107 -113.
[3] SCHMIDT R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,
1986, 34(3): 276 -280.
[4] ROY R, KAILATH T. ESPRIT: estimation of signal parameters via rotational invariance techniques. IEEE Transactions on
Acoustics Speech and Signal Processing, 1989, 37(7): 984 - 995.
[5] TIAN Y, LIU W, XU H, et al. 2-D DOA estimation of incoherently distributed sources considering gain-phase
perturbations in massive MIMO systems. IEEE Transactions on Wireless Communications, 2022, 21(2): 1143 -1155.
[6] NG B P, LIE J P, ER M H, et al. A practical simple geometry and gain/ phase calibration technique for antenna array processing.
IEEE Transactions on Antennas and Propagation, 2009, 57(7): 1963 -1972.
[7] ZHANG Y F, MA H, TAN P. A low complexity calibration method of gain and phase error for arrays with arbitrary geometry.
Proceedings of the 2011 International Conference on Multimedia Technology, 2011, Jul 26 - 28, Hangzhou, China. Piscataway,
NJ, USA: IEEE, 2011: 3342 -3345.
[8] PENG W, GAO Y, QU Y, et al. Array calibration with sensor gain and phase errors using invasive weed optimization algorithm.
Proceedings of the 6th Asia-Pacific Conference on Antennas and Propagation (APCAP'17), 2017, Oct 16 - 19, Xi'an, China.
Piscataway, NJ, USA: IEEE, 2017: 1 -3.
[9] YANG C L, ZHENG Z, WANG W Q. Calibrating nonuniform linear arrays with model errors using a source at unknown location.
IEEE Communications Letters, 2020, 24(12): 2917 -2921.
[10] DAI Z, SU W M, GU H. A gain and phase autocalibration approach for large-scale planar antenna arrays. IEEE
Communications Letters, 2021, 25(5): 1645 -1649.
[11] JIANG J J, DUAN F, CHEN J, et al. Two new estimation algorithms for sensor gain and phase errors based on different data
models. IEEE Sensors Journal, 2013, 13(5): 1921 -1930.
[12] CONG J Y, WANG X P, HUANG M X, et al. Robust DOA estimation method for MIMO radar via deep neural networks. IEEE
Sensors Journal, 2021, 21(6): 7498 -7507.
[13] LIU Z M, ZHANG C W, YU P S. Direction-of-arrival estimation based on deep neural networks with robustness to array
imperfections. IEEE Transactions on Antennas and Propagation,
2018, 66(12): 7315 -7327.
[14] CHEN Y, XIONG K L, HUANG Z T. Robust direction-of-arrival estimation via sparse representation and deep residual convolutional network for co-prime arrays. Proceedings of the IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT'20), 2020, Nov 13 - 15, Shenzhen, China. Piscataway, NJ, USA: IEEE, 2020: 514 - 519.
[15] AHMED A M, EISSA O, SEZGIN A. Deep autoencoders for DOA estimation of coherent sources using imperfect antenna array.
Proceedings of the 3rd International Workshop on Mobile Terahertz Systems ( IWMTS'20 ), 2020 Jul 1 - 2, Essen, Germany.
Piscataway, NJ, USA: IEEE, 2020: 1 -5.
[16] HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks,
1994, 5(6): 989 -993.
|