1. Zhou D H, Liu Y, He X. Review on fault diagnosis techniques for closed-loop system. Acta Automatica Sinica, 2013, 39(11): 1933 -1943 (in Chinese)
2. Zhang K, Zhou D H, Cai Y. Review of multiple fault diagnosis methods. Control Theory and Applications, 2015, 32(9): 1143 -1157 (in Chinese)
3. Heirung T A N, Mesbah A. Input design for active fault diagnosis. Annual Reviews in Control, 2019, 47: 35 -50
4. Niemann H, Poulsen N K. Active fault diagnosis in closed-loop systems. IFAC Proceedings Volumes, 2005, 38(1): 448 -453
5. Wang R J, Bai Y, Zeng Z Q, et al. Sensor fault diagnosis method for quad-rotor aircraft based on adaptive observer. Chinese Journal of Sensors and Actuators, 2018, 31(8): 1192 -1200
6. Zhang K P, Jiang B, Chen F Y, et al. Time-varying model identified based coupled fault diagnosis for high-speed trains. Control and Decision, 2019, 34(2): 274 -278 (in Chinese)
7. Wen C L, Lu F Y, Bao Z J, et al. A review of data-driven-based incipient fault diagnosis. Acta Automatica Sinica, 2016, 42(9): 1285 -1299 (in Chinese)
8. Shi W, Lu N Y, Jiang B, et al. Data-driven intelligent incipient fault diagnosis for subway vehicle door system. Chinese Journal of Scientific Instrument, 2019, 40(6): 192 -201 (in Chinese)
9. Luo M, Li C S, Zhang X Y, et al. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Transactions, 2016, 65: 556 -566
10. Song J, Zheng Z Y, Liu Y, et al. Wavelet packet-based kernel extreme learning machine for sensor faults diagnosis of hypersonic vehicle. Proceedings of the 2018 Chinese Automation Congress (CAC'17), 2018, Nov 30 - Dec 2, Xi'an, China. Piscataway, NJ, USA: IEEE, 2017: 2017 -2022
11. Jiang B, Zhao J, Qi R Y, et al. Survey of fault diagnosis and fault-tolerant control for near-space vehicles. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(5): 603 -610 (in Chinese)
12. Tian Y L, Liu X Y. A deep adaptive learning method for rolling bearing fault diagnosis using immunity. Tsinghua Science and Technology, 2019, 24(6): 750 -762
13. Ren H, Qu J F, Chai Y, et al. Deep learning for fault diagnosis: the state of the art and challenge. Control and Decision, 2017, 32(8): 1345 -1358 (in Chinese)
14. Jiang H K, Shao H D, Li X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft. Journal of
Mechanical Engineering, 2019, 55(7): 27 -34 (in Chinese)
15. Zhao J S, Li Y, Qiu T. A method for sensor fault diagnosis based on wavelet transform and neural network. Journal of Tsinghua University: Science and Technology, 2013, 53(2): 205 -229 (in Chinese)
16. Li J, Zhou D H, Si X S, et al. Review of incipient fault diagnosis methods. Control Theory and Applications, 2012, 29(12): 1517 -1529 (in Chinese)
17. Zhou J, Yang Y, Ding S X, et al. A fault detection and health monitoring scheme for ship propulsion systems using SVM technique. IEEE Access, 2018, 6: 16207 -16215
18. Xu H Y, Huang Y T, Yu W Z. Sensor fault diagnosis based on wavelet neural network and passive observer. Journal of Huazhong University of Science and Technology: Natural Science, 2020, 48(4): 91 -96 (in Chinese)
19. Song J, Shi R L, Guo X H, et al. KELM based diagnostics for air vehicle faults. Journal of Tsinghua University: Science and Technology, 2020, 60(10): 795 -803
20. Han J Q, Zhang R. Error analysis of the second-order ESO. Journal of Systems Science and Mathematical Sciences, 1999, 19(4): 465 -471 (in Chinese)
21. Zhou D H, Hu Y Y. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748 -758 (in Chinese)
22. Ding S, Zhang P, Ding E, et al. On the application of PCA technique to fault diagnosis. Tsinghua Science and Technology, 2010, 15(2): 138 -144
23. Yang Z Q, Li Y, Hu D W. Independent component analysis: a survey. Acta Automatica Sinica, 2002, 28(5): 762 -772 (in Chinese)
24. Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks. Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IJCNN'04): 2004, Jul 25 -29, Budapest, Hungary. Piscataway, NJ, USA: IEEE, 2004, 2: 985 -990
25. Pal M, Maxwell A E, Warner T A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sensing Letters, 2013, 4(9): 853 -862
|