1. Kuang L W, Hao F, Yang L T, et al. A tensor-based approach for big data representation and dimensionality reduction. IEEE Transactions on Emerging Topics in Computin, 2014, 2(3): 280-291.
2. Ur Rehman M H, Yaqoob I, Salah K, et al. The role of big data analytics in industrial internet of things. Future Generation Computer Systems, 2019, 99: 247-259.
3. Wang C. Industrial big data software architecture and core components. Software and Integrated Circuits, 2019, (9): 50-51 (in Chinese).
4. Sun W L, Zhang X D, Xiong Z H et al. Intelligent manufacturing and its key technologies. Journal of Xinjiang University: Natural Science Edition, 2019, 36(4): 379-386 (in Chinese).
5. He W T, Shao C. The development and challenges of industrial big data analysis technology. Information and Control, 2018, 47(4): 398-410 (in Chinese).
6. Yu Y, Yi D J, Tang Z, et al. A regression prediction model based on incremental iteration for big industrial data. Proceedings of the IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SMARTCITY/DSS’19), 2019, Aug 10-12, Zhangjiajie, China. Piscataway, NJ, USA: IEEE, 2019: 1886-1893.
7. Zhao Y L, Yang L T, Zhang R H, et al. A tensor-based multiple clustering approach with its applications in automation systems. IEEE Transactions on Industrial Informatics, 2018, 14(1): 283-291.
8. Kaur D, Aujla G S, Kumar N, et al. Tensor-based big data management scheme for dimensionality reduction problem in smart grid systems: SDN perspective. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(10): 1985-1998.
9. Veganzones M A, Cohen J E, Farias R C, et al. Nonnegative tensor CP decomposition of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2577-2588.
10. Wang M Y, Song Y. Tensor decompositions via two-mode higher-order SVD (HOSVD). Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS’17), 2017, Apr 20-22, Fort Lauderdale, FL, USA. 2017: 614-622.
11. Hinrich J L, Mørup M. Probabilistic tensor train decomposition. Proceedings of the 27th European Signal Processing Conference (EUSIPCO’19), 2019, Sept 2-6, Coruna, Spain. Piscataway, NJ, USA: IEEE, 2019: 5p.
12. Li P, Chen Z K, Yang L T, et al. Deep convolutional computation model for feature learning on big data in Internet of things. IEEE Transactions on Industrial Informatics, 2018, 14(2): 790-798.
13. Li P, Chen Z K, Yang L T, et al. An incremental deep convolutional computation model for feature learning on industrial big data. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1341-1349.
14. Zhang Q C, Zhu C S, Yang L T, et al. An incremental CFS algorithm for clustering large data in industrial Internet of things. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1193-1201.
15. Zhao Y L, Yang L T, Sun J Y. Privacy-preserving tensor-based multiple clusterings on cloud for industrial IoT. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2372-2381.
16. Kuang L W, Yang L T, Wang X K, et al. A tensor-based big data model for QoS improvement in software defined networks. IEEE Network, 2016, 30(1): 30-35.
17. Wu J, Dong M X, Ota K, et al. Big data analysis-based secure cluster management for optimized control plane in software-defined networks. IEEE Transactions on Network and Service Management, 2018, 15(1): 27-38.
18. Cui J, Lu Q H, Zhong H, et al. A load-balancing mechanism for distributed SDN control plane using response time. IEEE Transactions on Network and Service Management, 2018, 15(4): 1197-1206.
19. Holtz S, Rohwedder T, Schneider R. The alternating linear scheme for tensor optimization in the tensor train format. SIAM Journal on Scientific Computing, 2012, 34(2): A683-A713.
20. Cichocki A. Tensor networks for big data analytics and large-scale optimization problems. arXiv preprint, arxiv:1407.3124. 2014.
21. Gorodetsky A, Karaman S, Marzouk Y. High-dimensional stochastic optimal control using continuous tensor decompositions. The International Journal of Robotics Research, 2018, 37(2/3): 340-377.
22. Chen Z M, Batselier K, Suykens J A K, et al. Parallelized tensor train learning of polynomial classifiers. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4621-4632.
23. Bengua J A, Phien H O, Tuan H D, et al. Efficient tensor completion for color image and video recovery: Low-rank tensor train. IEEE Transactions on Image Processing, 2016, 26(5): 2466-2479.
24. Eduardo C, Abtin R, Denis Z. A tensor-train accelerated solver for integral equations in complex geometries. Journal of Computational Physics, 2017, 334: 145-169.
25. Martin C D M. Tensor decompositions workshop discussion notes. Palo Alto, CA, USA: American Institute of Mathematics, 2004: 1-27.
26. Henry E R, Hofrichter J. Singular value decomposition: Application to analysis of experimental data. Methods in Enzymology, 1992, 210: 129-192.
27. Volkov V G, Dem’yanov D N. Application of matrix decompositions for matrix canonization. Computational Mathematics and Mathematical Physics, 2019, 59(11): 1759-1770.
28. Oseledets I V. Tensor-train decomposition. SIAM Journal on Scientific Computing, 2011, 33(5): 2295-2317.
29. Batselier K, Liu H T, Wong N. A constructive algorithm for decomposing a tensor into a finite sum of orthonormal rank-1 terms. SIAM Journal on Matrix Analysis and Applications, 2014, 36(3), 1315-1337.
|