1. Rizzi P, Ferrari P, Flammini A, et al. Evaluation of the IoT LoRaWAN solution for distributed measurement applications. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (12): 3340-3349.
2. Lavric A, Popa V. Internet of things and LoRaTM low-power wide-area networks: A survey. Proceedings of the 2017 International Symposium on Signals, Circuits and Systems (ISSCS’17), 2017, Jul 13-14, Iasi, Romania. Piscataway, NJ, USA: IEEE, 2017: 5p.
3. Zhang X H, Du J L, Fan C G, et al. A wireless sensor monitoring node based on automatic tracking solar-powered panel for paddy field environment. IEEE Internet Things Journal, 2017, 4(5): 1304-1311.
4. Sinha R S, Wei Y Q, Hwang S H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express, 2017, 3(1): 14-21.
5. Kim Y, Lee S S, Lee S K. Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE Journal of Biomedical and Health Informatics, 2016, 20(1): 222-230.
6. Peng C H, Qian K, Wang C Y. Design and application of a VOC-monitoring system based on a ZigBee wireless sensor network. IEEE Sensors Journal, 2015, 15(4): 2255-2268.
7. Moulik S, Misra S, Chakraborty C. Performance evaluation and delay-power trade-off analysis of ZigBee protocol. IEEE Transactions on Mobile Computing, 2019, 18(2): 404-416.
8. Zhang B, Zuo J H, Mao W W. SmartWAZ: Design and Implementation of a smart WiFi access system assisted by Zigbee. IEEE Access, 2019, 7: 31002-31009.
9. Lesani A, Miranda-Moreno L. Development and testing of a real-time WiFi-bluetooth system for pedestrian network monitoring, classification, and data extrapolation. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1484-1496.
10. Molina L, Kerdoncuff T, Shehadeh D, et al. WMSP: Bringing the wisdom of the crowd to WiFi networks. IEEE Transactions on Mobile Computing, 2017, 16(12): 3580-3591.
11. Hadded M, Muhlethaler P, Laouiti A, et al. TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2461-2492.
12. Anwar M, Xia Y Q, Zhan Y F. TDMA-based IEEE 802.15.4 for low-latency deterministic control applications. IEEE Transactions on Industrial Informatics, 2016, 12(1): 338-347.
13. Lee J K, Noh H J, Lim J S. Dynamic cooperative retransmission scheme for TDMA systems. IEEE Communications Letters, 2012, 16(12): 2000-2003.
14. Qian Q. Research on an improved dynamic TDMA time slot allocation algorithm. Radio Engineering, 2017, 47(12): 1-4 (in Chinese).
15. Li M Z, Zi W B, Wang H. Research on TDMA time slot allocation protocol in the MAC layer of LoRa wireless network. Computer Engineering, 2019, 45(9): 95-99, 118 (in Chinese).
16. Perera C, Liu C H, Jayawardena S. The emerging Internet of things marketplace from an industrial perspective: A survey. IEEE Transactions on Emerging Topics in Computing, 2015, 3(4): 585-598.
17. Zhang X H, Zhang M M, Meng F F, et al. A low-power wide-area network information monitoring system by combining NB-IoT and LoRaA. IEEE Internet of Things Journal, 2019, 6(1): 590-598.
18. Wu F, Redouté J M, Yuce M R. WE-Safe: A self-powered wearable IoT sensor network for safety applications based on LoRa. IEEE Access, 2018, 6: 40846-40853.
19. Marais J M, Malekian R, Abu-Mahfouz A M. Evaluating the LoRaWAN protocol using a permanent outdoor testbed. IEEE Sensors Journal, 2019, 19(12): 4726-4733.
20. Tang C, Song L X, Balasubramani J, et al. Comparative investigation on CSMA/CA-based opportunistic random access for Internet of things. IEEE Internet of Things Journal, 2014, 1(2): 171-179.
21. Maatouk A, Assaad M, Ephremides A. Energy efficient and throughput optimal CSMA scheme. IEEE/ACM Transactions on Networking, 2020, 27(1): 316-329.
22. Kim Y, Baccelli F, de Veciana G. Spatial reuse and fairness of ad hoc networks with channel-aware CSMA protocols. IEEE Transactions on Information Theory, 2014, 60(7): 4139-4157.
23. Zhuo S G, Wang Z, Song Y Q, et al. A traffic adaptive multi-channel MAC protocol with dynamic slot allocation for WSNs. IEEE Transactions on Mobile Computing, 2016, 15(7): 1600-1613.
24. Misra S, Sarkar S. Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game--Theoretic perspective. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2): 541-548.
25. Jiang L B, Shah D, Shin J, et al. Distributed random access algorithm: Scheduling and congestion control. IEEE Transactions on Information Theory, 2010, 56(12): 6182-6207.
26. Chaudhari Q M. A simple and robust clock synchronization scheme. IEEE Transactions on Communications, 2012, 60(2): 328-332.
27. Shames I, Bishop A N. Relative clock synchronization in wireless networks. IEEE Communications Letters, 2010, 14(4): 348-350.
28. Wang H, Zeng H Y, Wang P. Linear estimation of clock frequency offset for time synchronization based on overhearing in wireless sensor networks. IEEE Communications Letters, 2016, 20(2): 288-291.
29. Lee H C, Ke K H. Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2177-2187.
30. Benaissa S, Plets D, Tanghe E, et al. Internet of animals: Characterisation of LoRa sub-GHz off-body wireless channel in dairy barns. Electronics Letters, 2017, 53(18): 1281-128.
|