1. Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation -- A review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213(1): 1-14.
2. Pecht M G. Prognostics and health management of electronics: Fundamentals, machine learning, and the Internet of things. New York, NY, USA: John Wiley & Sons, 2009: 222-229.
of Posts and Telecommunications, 2007 14(3): 28–33
3. Pawar P M, Ganguli R. Fuzzy-logic-based health monitoring and residual-life prediction for composite helicopter rotor. Journal of Aircraft, 2007, 44(3): 981-995.
4. Eker Ö F, Camci F, Jennions I K. Major challenges in prognostics: Study on benchmarking prognostic datasets. Proceedings of the 1st European Conference of the Prognostics and Health Management (PHM’12): Vol 3, 2012, Jul 3-5, Dresden, Germany. 2012: 8p.
5. Xu J P, Wang Y S, Xu L. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data. IEEE Sensors Journal, 2014, 14(4): 1124-1132.
6. Peel L. Data driven prognostics using a Kalman filter ensemble of neural network models. Proceedings of the 2008 International Conference on Prognostics and Health Management, 2008, Oct 6-9, Denver, CO, USA. Piscataway, NJ, USA: IEEE, 2008: 6p.
7. Tobon-Mejia D A, Medjaher K, Zerhouni N, et al. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Transactions on Reliability, 2012, 61(2): 491-503.
8. Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 2002, 3: 115-143.
9. Babu G S, Zhao P L, Li X L. Deep convolutional neural network based regression approach for estimation of remaining useful life. Proceedings of the 21st International Conference on Database Systems for Advanced Applications (DASFAA’16), 2016, Apr 16-19, Dallas, TA, USA. Berlin, Germany: Springer, 2016: 214-228.
10. Zheng S, Ristovski K, Farahat A, et al. Long short-term memory network for remaining useful life estimation. Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM'17), 2017, Jun 19-21, Dallas, TX, USA. Piscataway, NJ, USA: IEEE, 2017: 88-95.
11. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770-778.
12. Wu Y H, Schuster M, Chen Z F, et al. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144, 2016.
13. Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
14. Li S, Li W Q, Cook C, et al. Independently recurrent neural network (IndRNN): Building a longer and deeper RNN. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 5457-5466.
15. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on International Conference on Machine Learning (ICML'13): Vol 3, 2013, Jun 16-21, Atlanta, GA, USA. Red Hook, NY, USA: Curran Associates, 2013: 1310-1318.
16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436-444.
17. Le Q V, Jaitly N, Hinton G E. A simple way to initialize recurrent networks of rectified linear units. arXiv:1504.00941, 2015.
18. Ramasso E, Saxena A. Performance benchmarking and analysis of prognostic methods for CMAPSS datasets. International Journal of Prognostics and Health Management, 2014, 5(2): 1-15.
19. Sutharssan T. Prognostics and health management of light emitting diodes. Ph D Thesis. London, UK: University of Greenwich, 2012.
20. Heimes F O. Recurrent neural networks for remaining useful life estimation. Proceedings of the 2008 International Conference on Prognostics and Health Management, 2008, Oct 6-9, Denver, CO, USA. Piscataway, NJ, USA: IEEE, 2008: 6p.
|