1. Cisco visual networking index: forecast and methodology, 2016-2021-2019. San Jose, CA, USA: Cisco
2. Szabo G, Huberman B A. Predicting the popularity of online content. Communications of the ACM, 2010, 53(8): 80-88
3. Crane R, Sornette D. Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences, 2008, 105(41): 15649-15653
4. Chatzopoulou G, Sheng C, Faloutsos M. A first step towards understanding popularity in YouTube. Proceedings of the 2010 IEEE Conference on Computer Communications Workshops, Mar 15-19, 2010, San Diego, CA, USA. Piscataway, NJ, USA: IEEE, 2010: 6p
5. Gill P, Arlitt M, Li Z P, et al. YouTube traffic characterization: a view from the edge. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC’07), Oct 24-26, 2007, San Diego, CA, USA. New York, NY, USA: ACM, 2007: 15-28
6. Zink M, Suh K, Gu Y, et al. Characteristics of YouTube network traffic at a campus network–measurements, models, and implications. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2009, 53(4): 501-514
7. Cha M, Kwak H, Rodriguez P, et al. Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Transactions on Networking, 2009, 17(5): 1357-1370
8. Tan X Y, Guo Y C, Chen Y S, et al. Characterizing user popularity preference in a large-scale online video streaming system. Proceedings of the 6th International Conference on Wireless, Mobile and Multi-Media, Nov 20-23, 2015, Beijing, China. Piscataway, NJ, USA: IEEE, 2015: 246-249
9. Liu W, Zhang G, Chen J, et al. A measurement-based study on application popularity in android and iOS APP stores. Proceedings of the 2015 Workshop on Mobile Big Data, Jun 22-25, 2015, Hangzhou, China. New York, NY, USA: ACM, 2015: 13-18
10. Li C Y, Liu J. Large-scale characterization of comprehensive online video service in mobile network. Proceedings of the 2016 IEEE International Conference on Communications (ICC’16), May 22-7, 2016, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2016: 7p
11. Cheng X, Dale C, Liu J C. Statistics and social network of YouTube videos. Proceedings of the 16th International Workshop on Quality of Service (IWQoS’08), Jun 2-4, 2008, Enschede, Netherlands. Piscataway, NJ, USA: IEEE, 2008: 229-238.
12. Figueiredo F, Benevenuto F, Almeida J M. The tube over time: characterizing popularity growth of YouTube videos. Proceedings of the 2011 ACM International Conference on Web Search and Data Mining (WSDM’11), Feb 9-12, 2011, Hong Kong, China. New York, NY, USA: ACM, 2008: 745-754
13. Figueiredo F, Almeida J M, Gonçalves M A, et al. On the dynamics of social media popularity: a YouTube case study. ACM Transactions on Internet Technology, 2014, 14(4): Article 24
14. Gonçalves G D, Figueiredo F, Almeida J M, et al. Characterizing scholar popularity: a case study in the computer science research community. Proceedings of the 2014 IEEE/ACM Joint Conference on Digital Libraries, Sept 8-14, 2014, London, UK. Piscataway, NJ, USA: IEEE, 2014: 57-66
15. Yang J, Leskovec J. Patterns of temporal variation in online media. Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM’11), Feb 9-12, 2011, Hong Kong, China. New York, NY, USA: ACM, 2011: 177-186
16. Borghol Y, Mitra S, Ardon S, et al. Characterizing and modelling popularity of user-generated videos. Performance Evaluation, 2011, 68(11): 1037-1055
17. Wu F, Huberman BA. Novelty and collective attention. Proceedings of the National Academy of Sciences, 2007, 104(45): 17599-17601
18. Ratkiewicz J, Fortunato S, Flammini A, et al. Characterizing and modeling the dynamics of online popularity. Physical Review Letters, 2010, 105(15): Article 158701
19. Cheng X, Liu J C, Dale C. Understanding the characteristics of internet short video sharing: a YouTube-based measurement study. IEEE Transactions on Multimedia, 2013, 15(5): 1184-1194
20. Roy S D, Mei T, Zeng W J, et al. Towards cross-domain learning for social video popularity prediction. IEEE Transactions on Multimedia, 2013, 15(6): 1255-1267
21. Vallet D, Berkovsky S, Ardon S, et al. Characterizing and predicting viral-and-popular video content. Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM’15), Oct 18-23, 2015, Melbourne, Australia. New York, NY, USA: ACM, 2015: 1591-1600
22. Pinto H, Almeida J M, Gonçalves M A. Using early view patterns to predict the popularity of YouTube videos. Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM’13), Feb 4-8, 2013, Rome, Italy. New York, NY, USA: ACM, 2013: 365-374
23. Tatar A, Leguay J, Antoniadis P, et al. Predicting the popularity of online articles based on user comments. Proceedings of the 2011 International Conference on Web Intelligence, Mining and Semantics (WIMS’11), May 25-27, 2011, Sogndal, Norway. New York, NY, USA: ACM, 2011: Article 67
24. Chen H Q, Zhong X F, Sun J, et al. Online prediction algorithm of the news’ popularity for wireless cellular pushing. Proceedings of the 2015 IEEE/CIC International Conference on Communications in China (ICCC’15), Nov 2-4, 2015, Shenzhen, China. Piscataway, NJ, USA: IEEE, 2015: 5p
25. Tatar A, Antoniadis P, De Amorim M D, et al. From popularity prediction to ranking online news. Social Network Analysis and Mining, 2014, 4: Article 174
26. Lin Y J, Yeh M Y, Chiu F Y, et al. Predicting popularity of articles on bulletin board system. Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp’16), Jan 18-20, 2016, Hong Kong, China. Piscataway, NJ, USA: IEEE, 2016: 169-176
27. Ma C S, Yan Z S, Chen C W. Forecasting initial popularity of just-uploaded user-generated videos. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP’16), Sept 25-28, 2016, Phoenix, AZ, USA. Piscataway, NJ, USA: IEEE, 2016: 474-478
28. Kong Q C, Mao W J, Liu C Y. Popularity prediction based on interactions of online contents. Proceedings of the 4th International Conference on Cloud Computing and Intelligence Systems (CCIS’16), Aug 17-19, 2016, Beijing, China. Piscataway, NJ, USA: IEEE, 2016: 5p
29. Lemahieu R, Van Canneyt S, De Boom C, et al. Optimizing the popularity of twitter messages through user categories. Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW’15), Nov 14-17, 2015, Atlantic City, NJ, USA. Piscataway, NJ, USA: IEEE, 2015: 1396-1401