1. Farrahi K, Gatica-Perez D. Discovering routines from large-scale human locations using probabilistic topic models. ACM Transactions on Intelligent Systems and Technology, 2011, 2(1): Article 3
2. Ye M, Shou D, Lee W C, et al. On the semantic annotation of places in location-based social networks. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11), Aug 21-24, 2011, San Diego, CA, USA. New York, NY, USA: ACM, 2011: 520-528
3. Yin Z J, Cao L L, Han J W, et al. Geographical topic discovery and comparison. Proceedings of the 20th International Conference on World Wide Web (WWW’11), Mar 28-Apr 1, 2011, Hyderabad, India. New York, NY, USA: ACM, 2011: 247-256
4. Ferrari L, Rosi A, Mamei M, et al. Extracting urban patterns from location-based social networks. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Nov 1-4, 2011, Chicago, IL, USA. New York, NY, USA: ACM, 2011: 9-16
5. Agarwal D, Chen B C. Flda: matrix factorization through latent dirichlet allocation. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM’10), Feb 4-6, 2010, New York, NY, USA. New York, NY, USA: ACM, 2010: 91-100
6. Pennacchiotti M, Gurumurthy S. Investigating topic models for social media user recommendation. Proceedings of the 20th International Conference on World Wide Web (WWW’11), Mar 28-Apr 1, 2011, Hyderabad, India. New York, NY, USA: ACM, 2011: 101-102
7. Wang H, Terrovitis M, Mamoulis N. Location recommendation in location-based social networks using user check-in data. Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 5-8, 2013, Orlando, FL, USA. New York, NY, USA: ACM, 2013: 374-383
8. Bao J, Zheng Y, Mokbel M F. Location-based and preference-aware recommendation using sparse geo-social networking data. Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 6-9, 2012, Redondo Beach, CA, USA. New York, NY, USA: ACM, 2012: 199-208
9. Liu B, Xiong H. Point-of-interest recommendation in location based social networks with topic and location awareness. Proceedings of the SIAM International Conference on Data Mining (SDM’13), May 2-4, 2013, Austin, TX, USA. New York, NY, USA: ACM, 2013: 396-404
10. Lian D F, Zhao C, Xie X, et al. Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), Aug 24-27, 2014, New York, NY, USA. New York, NY, USA: ACM, 2014: 831-840
11. Hu L K, Sun A X, Liu Y. Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 6-11, 2014, Gold Coast, Australia. New York, NY, USA: ACM, 2014: 345-354
12. Ye M, Yin P F, Lee W C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation. Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 24-28, 2011, Beijing, China. New York, NY, USA: ACM, 2011: 325-334
13. Liu B, Fu Y J, Yao Z J, et al. Learning geographical preferences for point-of-interest recommendation. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), Aug 11-14, 2013, Chicago, IL, USA. New York, NY, USA: ACM, 2013: 1043-1051
14. Yuan Q, Cong G, Ma Z Y, et al. Time-aware point-of-interest recommendation. Proceedings of the 36th ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 28-Aug 1, 2013, Dublin, Ireland. New York, NY, USA: ACM, 2013: 363-372
15. Zhang J D, Chow C Y. iGSLR: personalized geo-social location recommendation–a kernel density estimation approach. Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 5-8, 2013, Orlando, FL, USA. New York, NY, USA: ACM, 2013: 334-343
16. Cheng C, Yang H Q, King I, et al. Fused matrix factorization with geographical and social influence in location-based social networks. Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), Jul 22-26, 2012, Toronto, Canada. Menlo Park, CA , USA: AAAI, 2012: 17-23
17. Zhang J D, Chow C Y. CoRe: exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations. Journal of Information Sciences, 2015, 293(1): 163-181
18. Zhang J D, Chow C Y, Li Y H. Lore: exploiting sequential influence for location recommendations. Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 4-7, 2014, Dallas, TX, USA. New York, NY, USA: ACM, 2014: 103-112
19. Ying J J C, Kuo W N, Tseng V S, et al. Mining user check-in behavior with a random walk for urban point-of-interest recommendations. Journal of the ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): Article 40/1-26
20. Liu X, Wu W. Learning context-aware latent representations for context-aware collaborative filtering. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug 9-13, 2015, Santiago, Chile. New York, NY, USA: ACM, 2015: 887-890
21. Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022
22. Griffiths T L, Steyvers M. Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Sup 1): 5228-5235
23. Cheng Z Y, Caverlee J, Lee K, et al. Exploring millions of footprints in location sharing services. Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM’11), Jul 17-21, 2011, Barcelona, Spain. Menlo Park, CA , USA: AAAI, 2011: 81-88
24. Yin H Z, Sun Y Z, Cui B, et al. Lcars: a location-content-aware recommender system. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), Aug 11-14, 2013, Chicago, IL, USA. New York, NY, USA: ACM, 2013: 221-229
|