1. Jaeger H. The ‘echo state’ approach to analyzing and training recurrent neural networks—with an Erratum note. GMD Tech Rep 148. St Augustin, Germany: German National Research Center for Information Technology, 2001
2. Jaeger H. Short term memory in echo state networks. GMD Tech Rep 152. St Augustin, Germany : German National Research Center for Information Technology, 2001
3. Jaeger H. A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the ‘echo state network’ approach. GMD Tech Rep 159. St Augustin, Germany: German National Research Center for Information Technology, 2002
4. Skowronski M D, Harris J G. Noise-robust automatic speech recognition using a predictive echo state network. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(5): 1724-1730
5. Tong M H, Bickett A D, Christiansen E M, et al. Learning grammatical structure with echo state networks. IEEE Transactions on Neural Networks, 2007, 20(3): 424-432
6. Lin X W, Yang Z H, Song Y X. Short-term stock price prediction based on echo state networks. Expert Systems with Applications, 2009, 26(3): 7313-7317
7. Rodan A, Tino P. Minimum complexity echo state network. IEEE Transactions on Neural Networks, 2011, 22(1): 131-144
8. Zhang Q, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks, 1992, 3(6): 889-898
9. Zhang J, Walter G G, Miao Y. Wavelet neural networks for function learning. IEEE Transactions on Signal Processing, 1995, 43(6): 1485-1497
10. Lu C H. Wavelet fuzzy neural networks for identi?cation and predictive control of dynamic systems. IEEE Transactions on Industrial Electronics, 2011, 58(7): 3046-3057
11. Zhang Q. Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Network, 1997, 8(2): 227-236
12. Pati Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Transactions on Neural Networks, 1993, 4(1): 73-85
13. Wang S, Yang X J, Wei C J. Harnessing non-linearity by sigmoid-wavelet hybrid echo state networks (SWHESN). Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA’06), Jun 21-23, 2006, Dalian, China. Piscataway, NJ, USA: IEEE, 2006: 3014-3018
14. Jaeger H, Lukosevicius M, Popovici D, et al. Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks, 2007, 20(3): 335-352
15. Henon M. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 1976, 50(1): 69-77
16. Slutzky M, Cvitanovic P, Mogul D. Manipulating epileptiform bursting in the rat hippocampus using chaos control and adaptive techniques. IEEE Transactions on Biomedical Engineering, 2003, 50(5): 559-570
17. Xue Y, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition. Neural Networks, 2007, 20(3): 365-376
18. Liu X, Cui H Y, Zhou T J, et al. Performance evaluation of new echo state networks based on complex network. The Journal of China Universities of Posts and Telecommunications, 2011, 19(1): 87-93
19. Cui H Y, Liu X, Li L X. The architecture of dynamic reservoir in echo state network, chaos 22(3), 033127 (2012). http://dx.doi.org/10.1063/1.4746765