1. Hwang K S, Tan S W, Tsai M C. Reinforcement learning to adaptive control of nonlinear systems. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2003, 33(3): 514-521
2. Preux P, Delepoulle S, Darcheville J C. A generic architecture for adaptive agents based on reinforcement learning. Information Sciences, 2004, 161 (1/2): 37-55
3. Barto A G, Sutton R S, Anderson C W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13(5): 834-846
4. Sutton R, Precup D, Singh S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999, 112(2): 181-211
5. Dietterich T. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 2000, 13(1): 227-303
6. Andre D, Russell S J. Programmable reinforcement learning agents. Advances in Neural Information Processing Systems 13. Cambridge, MA, USA: MIT Press, 2001: 1019-1025
7. Sutton R S. Generalization in reinforcement learning: successful examples using sparse coarse coding. Advances in Neural Information Processing Systems 8. Cambridge, MA, USA: MIT Press, 1996: 1038-1044
8. Albus J S. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). Transactions of the ASME, Series G: Journal of Dynamic Systems, Measurement and Control, 1975, 97(3): 220-227
9. Rummery G A. Problem solving with reinforcement learning. Ph. D. Thesis. Cambridge, UK: Cambridge University, 1995
10. Ormoneit D, Sen S. Kernel-based reinforcement learning. Machine Learning, 2004, 49(2/3): 161-178
11. Gaskett C, Wettergreen D, Zelinsky A. Q-learning in continuous state and action spaces. Proceedings of the 12th Australian Joint Conference on Artificial Intelligence (AI’99), Dec 6-10, 1999, Sydney, Australia. LNCS 1747. Berlin, Germany: Springer- Verlag, 1999: 417-428
12. Lazaric A, Restelli M, Bonarini A. Reinforcement learning in continuous action spaces through sequential Monte Carlo methods. Advances in Neural Information Processing Systems 20. Cambridge, MA, USA: MIT Press, 2007: 833-840
13. Jouffe L. Fuzzy inference system learning by reinforcement learning. IEEE Transactions on Systems, Man and Cybernetics, 1998, 28 (3): 338-355
14. Maeda Y. Modified Q-learning method with fuzzy state division and adaptive rewards. Proceedings of the IEEE International Conference on Fuzzy Systems(FUZZ-IEEE’02): Vol 2, May 12-17, 2002, Honolulu, HI, USA. Piscatawaw, NJ, USA: IEEE, 2002, 1556-1561
15. Horiuchi T, Fujino A, Katai O, et al. Fuzzy interpolation based Q-learning with profit sharing plan scheme. Proceedings of the 6th IEEE International Conference on Fuzzy Systems (FUZZY-IEEE’97): Vol 3, Jul 1-5, 1997, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 1997: 1707-1712
16. Er M J, Deng C. Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34(3): 1478-1489
17. Juang C F. Combination of online clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Transactions on Fuzzy Systems, 2005, 13(3): 289-30
18. Kazemian H B, Li M. A fuzzy control scheme for video transmission in Bluetooth wireless. Information Sciences, 2006, 176(9): 1266-1289
19. Melin P, Castillo O. Intelligent control of a stepping motor drive using an adaptive neuron-fuzzy inference system. Information Sciences, 2005, 170 (2/3/4): 133-151
20. Lee C C. Fuzzy logic in control systems: fuzzy logic controller, Part I. IEEE Transactions Systems, Man and Cybernetics, 1990, 20 (2): 404-418
21. Lee C C. Fuzzy logic in control systems: fuzzy logic controller, Part II. IEEE Transactions Systems, Man and Cybernetics, 1990, 20 (2): 419-435
22. Platt J. A resource allocating network for function interpolation. Neural Computation, 1991, 3(2): 213-225
23. Singhal S, Wu L. Training multilayer perceptrons with the extended Kalman algorithm. Advances in Neural Processing Systems 1. San Mateo, CA, USA: Morgan Kaufman, 1989: 133-140
24. Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks (ICNN’95): Vol 4, Nov 27-Dec 1, Perth, Australia. Piscatawaw, NJ, USA: IEEE, 1995: 1942-1948
25. Kondo T, Ito K. A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control. Robotics and Autonomous Systems, 2004, 46(2): 111-124
26. Lin L J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 1992, 8(3/4): 293-321
27. K-Team S A. Khepera 2 user manual. Preverenges, Switzerland, 2002 |