1. Bennett C H, Brassard G, Crepeau C, et al. Teleportation an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channel. Physical Review Letters, 1993, 70(13): 1895-1899
2. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390:575-579
3. Gu Yong-jian, Li Weng-dong, Guo Guang-can. Protocol and quantum circuits for realizing deterministic entanglement concentration. Physical Review A, 2006, 73: 022321
4. Chen Xiu-bo, Liu Xin-yuan, Wen Qiao-yan, et al. Probabilistic teleportation of a two-particle entangled state via a partially entangled pair. The Journal of China Universities of Posts and Telecommunications, 2006, 13(4): 39-42
5. Karlsson A, Bourennane M. Quantum teleportation using three- particle entanglement. Physical Review A, 1998, 58(6): 4394-4400
6. Yeo Y. Quantum teleportation using three-particle entanglement. LANL Report No. Quant-ph/0302030, 2003: 2-4
7. Joo J, Park Y J, Oh S, et al. Quantum teleportation via a W state. New Journal of Physics, 2003, 5: 136.1-136.9
8. Li Wan-li, Li Chuan-feng, Guo Guang-can. Probabilistic teleportation and entanglement matching. Physical Review A, 2000, 61: 034301
9. Shi Bao-sen, Jiang Yun-kun, Guo Guang-can. Probabilistic teleportation of two-particle entangled state. Physics Letter A, 2000, 268: 161-164
10. Cola M M, Paris M G A. Teleportation of bipartite states using a single entangled pair. Physics Letter A, 2005, 337: 10-16
11. Cao Zhuo-liang, Song Wei. Teleportation of a two-particle entangled state via W class states. Physica A, 2005, 347: 177-183
12. Lin Xiu, Li Hong-cai. Probabilistic teleportation of an arbitrary three-particle state. Chinese Physics, 2005, 14(9): 1724-1731
13. Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Physical Review A, 2000, 62: 062314
14. Acin A, Andrianov A, Costa L, et al. Generalized Schmidt decomposition and classification of three-quantum-bit states. Physical Review Letter, 2000, 85: 1560-1563
15. Bae J, Jin J, Kim J, et al. Three-party quantum teleportation with asymmetric states. Chaos, Solitons and Fractals, 2005, 24(4): 1047-1052
16. Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single- qubit operations. Nature, 1999, 402: 390-393
17. Peres A. Higher order Schmidt decompositions, Physics Letter A , 1995, 202: 16-17
18. Obrien J L, Pryde G J, White A G., et al. Development of an all-optical quantum controlled-NOT gate. Nature, 2003, 426: 264-267 |