[1] PENG Y L, LIU S G, WANG X, et al. Joint local constraint and Fisher discrimination based dictionary learning for image
classification. Neurocomputing, 2020, 398: 505 -519.
[2] LI Z M, LAI Z H, XU Y, et al. A locality-constrained and label embedding dictionary learning algorithm for image classification.
IEEE Transactions on Neural Networks and Learning Systems, 2015, 28(2): 278 -293.
[3] SONG J Q, XIE X M, SHI G M, et al. Multi-layer discriminative dictionary learning with locality constraint for image classification. Pattern Recognition, 2019, 91: 135 -146.
[4] SHABAN A, RABIEE H R, FARAJTABAR M, et al. From local similarity to global coding: an application to image classification. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013, Jun 23 - 28, Portland, OR, USA.
Piscataway, NJ, USA: IEEE, 2013: 2794 -2801.
[5] DAVIS G, MALLAT S, AVELLANEDA M. Adaptive greedy approximations. Constructive Approximation, 1997, 13: 57 -98.
[6] MALLAT S G, ZHANG Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing,
1993, 41(12): 3397 -3415.
[7] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, 1993, Nov 1 - 3, Pacific Grove, CA, USA. Piscataway, NJ, USA: IEEE, 1993: 40 -44.
[8] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43 (1): 129 -159.
[9] SHAO S, XU R, LIU W F, et al. Label embedded dictionary learning for image classification. Neurocomputing, 2020, 385:
122 -131.
[10] BAO C L, JI H, QUAN Y H, et al. L0 norm based dictionary learning by proximal methods with global convergence. Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, Jun 23 - 28, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 3858 -3865.
[11] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2): 210 -227.
[12] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation.
IEEE Transactions on Signal Processing, 2006, 54(11): 4311 -4322.
[13] ZHANG Q, LI B X. Discriminative K-SVD for dictionary learning in face recognition. Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, Jun 13 - 18, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2010: 2691 -2698.
[14] JIANG Z L, LIN Z, DAVIS L S. Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651 -2664.
[15] STEFEN C W T, ROMBAUT M, PELLERIN D. Multi-layer dictionary learning for image classification. Proceedings of the 17th International Conference on Advanced Concepts for Intelligent Vision Systems ( ACIVS'16), 2016, Oct 24 - 27, Lecce, Italy. LNIP 10016. Berlin, Germany: Springer, 2016: 522 -533.
[16] TANG H, LIU H, XIAO W, et al. When dictionary learning meets deep learning: deep dictionary learning and coding network for image recognition with limited data. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2129 -2141.
[17] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Proceedings of the 14th
International Conference on Neural Information Processing Systems: Natural and Synthetic (NIPS'01), 2001, Dec 3 - 8, Vancouver, Canada. Cambridge, MA, USA: MIT Press, 2001: 585 -591.
[18] GHAMRAWI N, MCCALLUM A. Collective multi-label classification. Proceedings of the 14th ACM International Conference on Information and Knowledge Management, 2005, Oct 31 - Nov 5, Bremen, Germany, New York, NY, USA: ACM, 2005: 195 -200.
[19] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification. Proceedings of the 18th European Conference on Machine Learning ( ECML'07), 2007, Sep 17 - 21, Warsaw, Poland. LNAI 4701. Berlin, Germany: Springer, 2007: 406 -417.
[20] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition,2007,40(7):2038 -2048.
[21] HUANG J, LI G R, HUANG Q M, et al. Learning label-specific features and class-dependent labels for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3309 -3323.
|