1. Thorpe C, Murphy L. A survey of adaptive carrier sensing mechanisms for IEEE 802.11 wireless networks. IEEE Communications Surveys and Tutorials, 2014, 16(3): 1266–1293.
2. Deng J, Liang B, Varshney P K. Tuning the carrier sensing range of IEEE 802.11 MAC. Proceedings of the IEEE Global Telecommunications ConferenceNov 29-Dec 3, 2004, Dallas, TX, USA. Piscataway, NJ, USA: IEEE, 2004: 2987–2991. (GLOBECOM '04): Vol 5,
3. Ma H, Alazemi H M K, Roy S. A stochastic model for optimizing physical carrier sensing and spatial reuse in wireless ad hoc networks. Proceedings of the 2nd IEEE International Conference on Mobile Ad Nov 7-10, 2005, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2005: 8p.-hoc and Sensor Systems Conference (MASS''05),
4. Acholem O, Harvey B. Throughput performance in multihop networks using adaptive carrier sensing threshold. Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon’10), Mar 18-21, 2010, Concord, NC, USA. Piscataway, NJ, USA: IEEE, 2010: 287–291.
5. Zhu Y, Zhang Q, Niu Z, et al. On optimal physical carrier sensing: Theoretical analysis and protocol design. Proceedings of the 26thAnnual Joint Conference of the IEEE Computer and Communications (INFOCOM’07), May 6-12, 2007, Anchorage, AK, USA. Piscataway, NJ, USA: IEEE, 2007:2351–2355.
6. Haghani E, Krishnan M N, Zakhor A. Adaptive carrier-sensing for throughput improvement in IEEE 802.11 networks. Proceedings of the 2010 IEEE GLOBECOM Workshops (GC Wkshps’10), Dec 6-10, 2010, Miami, FL, USA. Piscataway, NJ, USA: IEEE, 2010: 6p.
7. Smith G. Dynamic sensitivity control V2. doc: IEEE 802.11-13/1012r4. 2013.
8. Shahwaiz Afaqui M, Garcia-Villegas E, Lopez-Aguilera E, et al. Evaluation of dynamic sensitivity control algorithm for IEEE 802.11ax. Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC’15), Mar 9-12, 2015, New Orleans, LA, USA. Piscataway, NJ, USA: IEEE, 2015: 1060–1065.
9. Kim Y, Kim M S, Gee S K, et al. AP selection algorithm with adaptive CCAT for dense wireless networks. Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC’17), Mar 19-22, 2017, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2017: 6p.
10. Bouchaala Y, Muhlethaler P, Shagdar O, et al. Optimized spatial CSMA for VANETs: A comparative study using a simple stochastic model and simulation results. Proceedings of the 14th IEEE Annual Consumer Communications , Jan 8-11, 2017, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2017: 293–298.and Networking Conference (CCNC'17)
11. Baccelli F, Blaszczyszyn B. Stochastic geometry and wireless networks, Vol 1: Theory--Foundations and trends in networking. Boston, MA, USA: Now Publishers, 2009.
12. Cali F, Conti M, Gregori E. IEEE 802.11 protocol design and performance evaluation of an adaptive backoff mechanism. IEEE Journal of Selected Areas in Communications, 2000, 18(9): 1774–1786.
14. Chiu S N, Stoyan D, Kendall W J, et al. Stochastic geometry and its applications. 3nd ed. New York, NY, USA: Jonh Wiley and Sons, 2013.
15. Andrews J G, Baccelli F, Ganti R K. A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 2011, 59(11): 3122–3134.
16. Baccelli F, Blaszczyszyn B, Muhlethaler P. Stochastic analysis of spatial and opportunistic aloha. IEEE Journal on Selected Areas in Communications, 2009, 27(7): 1105–1119.
17. Bianchi G. Performance analysis of IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535–547
18. Smith G. Dynamic sensitivity control practical usage. doc: IEEE 802.11-14/0779r2. 2014.
19. Jang S, Shin K G, Bahk S. Post-CCA and reinforcement learning based bandwidth adaptation in 802.11ac networks. IEEE Transactions on Mobile Computing, 2018, 17(2): 419–432.
20. Even-Dar E, Mansour Y. Learning rates for Q-learning. The Journal of Machine Learning Research, 2003, 5: 1–25.
21. Harmon M E, Harmon S S. Reinforcement learning: A tutorial.Ann Arbor, MI, USA: University of Michigan, 1996.
22. Koenig S, Simmons R G. Complexity analysis of real-time reinforcement learning. Proceedings of the 11th International Conference on Artificial Intelligence, Jul 11-15, 1993, Washington, DC, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence (AAAI), 1993: 95–105.
|