1. Yang C Y, Ma C, Yang M H. Single-image super-resolution: a benchmark. Proceedings of the 13th European Conference on Computer Vision (ECCV’14): Part IV, Sept 6-12, 2014, Zurich, Switzerland. LNCS 8692. Berlin, Germany: Springer-Verlag, 2014: 372-386
2. Sun J, Xu Z B, Shum H Y, et al. Image super-resolution using gradient profile prior. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), Jun 24-26, 2008, Anchorage, AK, USA. Piscataway, NJ, USA: IEEE, 2008: 8p
3. Kim K I, Kwon Y. Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(6): 1127-1133
4. Zhang H C, Yang J C, Zhang Y N, et al. Non-local kernel regression for image and video restoration. Proceedings of the 11th European Conference on Computer Vision (ECCV ’10): Part III, Sept 5-11, 2010, Crete, Greece. LNCS 6313. Berlin, Germany: Springer-Verlag , 2010: 566-579
5. Su H, Tang L, Wu Y, et al. Spatially adaptive block-based super-resolution. IEEE Transactions on Image Processing, 2012, 21(3): 1031-1045
6. He L, Qi H R, Zaretzki R. Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’13), Jun 23-28, 2013, Portland, OR, USA. Piscataway, NJ, USA: IEEE, 2013: 345-352
7. Purkait P, Chanda B. Image upscaling using multiple dictionaries of natural image patches. Proceedings of the 11th Asian Conference on Computer Vision (ACCV’13): Part III, Nov 5-9, 2012, Daejeon, Republic of Korea. LNCS 7726. Berlin, Germany: Springer-Verlag , 2013: 284-295
8. Dong W S, Zhang L, Lukac R, et al. Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Transactions on Image Processing, 2013, 22(4): 1382-1394
9. Protter M, Elad M, Takeda H, et al. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51
10. Gao X B, Wang Q, Li X L, et al. Zernike-moment-based image super resolution. IEEE Transactions on Image Processing, 2011, 20(10): 2738-2747
11. Liu C, Sun D Q. On Bayesian adaptive video super resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 346-360
12. Yang J C, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), Jun 23-28, 2008, Anchorage, AK, USA. Piscataway, NJ, USA: IEEE, 2008: 8p
13. Wang S L, Zhang L, Liang Y, et al. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), Jun 16-21, 2012, Providence, RI, USA. Piscataway, NJ, USA: IEEE, 2012: 2216-2223
14. Timofte R, De V, Gool L V. Anchored neighborhood regression for fast example-based super-resolution. Proceedings of the 2013 IEEEE International Conference on Computer Vision (ICCV’13), Dec 2-8, 2013, Sydney, Australia. Piscataway, NJ, USA: IEEE, 2013: 1920-1927
15. Dong C, Loy C C, He K M, et al. Learning a deep convolutional network for image super-resolution. Proceedings of the European Conference on Computer Vision (ECCV ’14), Sept 6-12, 2014, Zurich, Switzerland. LNCS 8692. Berlin, Germany: Springer-Verlag, 2014: 184-199
16. Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307
17. Liang M Y, Du J P, Liu H G. Spatiotemporal super-resolution reconstruction based on robust optical flow and Zernike moment for video sequences. Mathematical Problems in Engineering, 2013: 745752/1-14
18. Liang M Y, Du J P, Lee J M, et al. Spatio-temporal adaptive super-resolution reconstruction model based on Zernike moment for spatial video sequences. China Communications, 2012, 9(12): 93-107
19. He K M, Sun J. Convolutional neural networks at constrained time cost, Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), Jun 7-12, 2015, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 5353-5360
20. Shan Q, Li Z R, Jia J Y, et al. Fast image/video upsampling. ACM Transactions on Graphics, 2008, 27(5): 32-39
21. Zhu Y, Zhang Y N, Yuille A L. Single image super-resolution using deformable patches. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), Jun 23-28, 2014, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 2917-2924
22. Kwon Y M, Kim M G, Kim J L. Multiscale rank-based ordered dither algorithm for digital halftoning. Information Systems, 2015, 48: 241-247
23. Wang Z, Simoncelli E P, Bovik A C. Multi-scale structural similarity for image quality assessment. Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems, and Computers (ACSSC’03): Vol 2, Nov. 9-12, 2003, Pacific Grove, CA, USA. Alamitos, CA, USA: IEEE Computer Society, 2003: 1398-1402
24. Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386 |