1. Li L, Ma H D, Li G Y. Formal specification and model-checking of CSMA/CA using finite precision timed automata. The Journal of China Universities of Posts and Telecommunications, 2005, 12(3): 33-38
2. Zhong Y, Yi Z, Deng P M. On behavior of two dimensional cellular automata with an exceptional rule under periodic boundary condition. The Journal of China Universities of Posts and Telecommunications, 2010, 17(1): 67-72
3. Hromkovi? J, Schnitger G. On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Information and Computation, 2001, 169(2): 284-296
4. ?uriš P, Hromkovi? J, Rolim J D, et al. Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS’97), Feb 27-Mar 1, 1997, Lübeck, Germany. Berlin,Germany: Springer,1997: 117-128
5. Inoue K, Tanaka Y, Yue W. Self-verifying nondeter-ministic and Las Vegas multihead finite automata. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2001, 84(5): 1094-1101
6. Yoshinaga T, Inoue K. Las Vegas self-verifying nondeterministic and deterministic one-way multi- counter automata with bounded time. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, 86(5): 1207-1212
7. Assent I, Seibert S. An upper bound for transforming self-verifying automata into deterministic ones. RAIRO- Theoretical Informatics and Applications, 2007, 41(3): 261-265
8. Jirásková G, Pighizzini G. Optimal simulation of self-verifying automata by deterministic automata. Information and Computation, 2011, 209(3): 528-535
9. Glushkov V M. The abstract theory of automata. Russian Mathematical Surveys, 1961, 16(5): 1-53
10. Sakarovitch J. Elements of automata theory. Cambridge, UK: Cambridge University Press, 2009
11. Charatonik W, Chorowska A. Parameterized complexity of basic decision problems for tree automata. International Journal of Computer Mathematics, 2013, 22(10): 1-21
12. Long H, Fu Y. A general approach for building combinational P automata. International Journal of Computer Mathematics, 2007, 84(12): 1715-1730
13. Kim K H. Boolean matrix theory and applications. New York, NY, USA: Dekker Press, 1982
14. Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Systems & Control Letters, 2010, 59(12): 767-774
15. Cheng D Z. Semi-tensor product of matrices and its application to Morgen’s problem. Science in China, Series F: Information Sciences, 2001, 44(3): 195-212
16. Cheng D Z, Qi H S, Zhao Y. An introduction to semi-tensor product of matrices and its applications. Singapore: World Scientific Publishing Co, 2012
17. Cheng D Z. Disturbance decoupling of Boolean control networks. IEEE Transactions on Automatic Control, 2011, 56(1): 2-10
18. Cheng D Z, Qi H S, Li Z Q. Analysis and control of Boolean networks: A semi-tensor product approach. New York, NY, USA: Springer-Verlag, 2011
19. Li F F, Sun J T. Controllability and optimal control of a temporal Boolean network. Neural Networks, 2012, 34:10-17
20. Li H T, Wang Y Z. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica, 2012, 48(4): 688-693
21. Li Z Q, Qiao Y, Qi H S, et al. Stability of switched polynomial systems. Journal of Systems Science and Complexity, 2008, 21(3): 362-377
22. Cheng D Z, Qi H S. Global stability and stabilization of polynomial systems. Proceedings of the 46th IEEE Conference on Decision and Control (CDC’07), Dec 12-14, 2007, New Orleans, LA, USA. Piscataway, NJ, USA: IEEE, 2007: 1746-1751
23. Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48(7): 1227-1236
24. Yan Y, Chen Z, Liu Z. Solving type-2 fuzzy relation equations via semi-tensor product of matrices. Control Theory and Technology, 2014, 12(2):173-186
25. Qi H S. On shift register via semi-tensor product approach. Proceedings of the 32nd Chinese Control Conference (CCC’13), Jul 26-28, 2013, Xi’an, China. Piscataway, NJ, USA: IEEE, 2013: 208-212
26. Xu X R, Zhang Y Q, Hong Y G. Matrix approach to stabilizability of deterministic finite automata. Proceedings of the American Control Conference (ACC’13), Jun 17-19, 2013, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2013: 3242-3247
27. Xu X R, Hong Y G. Observability analysis and observer design for finite automata via matrix approach. IET Control Theory & Applications, 2013, 7(12): 1609-1615
28. Xu X R, Hong Y G. Matrix expression and reachability analysis of finite automata. Journal of Control Theory and Applications, 2012, 10(2): 210-215
29. Zhang G. Automata, Boolean matrices, and ultimate periodicity. Information and Computatioin, 1999, 152(1): 138-154
30. Dogruel M, Ozguner U. Controllability, reachability, stabilizability and state reduction in automata. Proceedings of the 1992 IEEE International Symposium on Intelligent Control (ISIC’92), Aug 11-13, 1992, Glasgow, UK. Piscataway, NJ, USA: IEEE, 1992: 192-197
31. Seshu S, Miller R, Metze G. Transition matrices of sequential machines. IRE Transactions on Circuit Theory, 1959, 6(1): 5-12
32. Zhang Y Q, Xu X R, Hong Y G. Bi-decomposition analysis and algorithm of automata based on semi-tensor product. Proceedings of the 31st Chinese Control Conference (CCC’12), Jul 25-27, 2012, Hefei, China. Piscataway, NJ, USA: IEEE, 2012: 2151-2156 |