1. Serway R, Jewett J. Physics for scientists and engineers. Cengage Learning, 2013
2. Ahlfors L V. Complex analysis. Krishna Prakashan Media, 1966
3. Qiao J Y. Two problems in the value distribution theory. Acta Mathematica Sinica 1995, 11(4): 365-371
4. Hayman W K. Research problems in function theory. London: Athlone Press 1967
5. Schmeisser G. Bemerkungen zu einer Vermutung von Ilieff. Math. Z, 1969, 111: 121-125
6. Brown, Johnny E, and Xiang G P. Proof of the Sendov conjecture for polynomials of degree at most eight. Journal of mathematical analysis and applications 232, 1999, 2: 272-292
7. Borcea L. The Sendov conjecture for polynomials with at most seven distinct zeros, Analysis 16, 1996, 2: 137-159
8. Brannan D A. On a conjecture of Ilieff, Proc. Camb. Phil. 1968, 64: 83-85
9. Brown J E. On the Sendov conjecture for sixth degree polynomials, Proc. Amer. Math, 1991,113(4): 939-946
10. Miller M J. On Sendov's Conjecture for Roots Near the Unit Circle. Journal of mathematical analysis and applications, 1993, 175(2): 632-639
11. Miller M J. A quadratic approximation to the Sendov radius near the unit circle. Transactions of the American Mathematical Society, 2005, 357(3): 851-873
12. Dégot, Jérôme. Sendov conjecture for high degree polynomials. Proceedings of the American Mathematical Society , 2014, 142(4): 1337-1349
13. Alexander J W. Functions which map the interior of the unit circle upon simple regions. Ann.of Math, 1915, 17: 12-22
14. Kakeya S. On zeros of a polynomial and its derivative.Tôhoku Math. J, 1917, 11: 5-16
15. Szegö G, et al. Grace tiber die Wurzeln algebraischer Gleichungen. Math. Z, 1922, 13: 28-55 |