The Journal of China Universities of Posts and Telecommunications ›› 2022, Vol. 29 ›› Issue (3): 92-104.doi: 10.19682/j.cnki.1005-8885.2022.1012
Received:
2021-10-27
Revised:
2022-04-07
Online:
2022-06-30
Published:
2022-06-30
Contact:
Yan Danfeng
E-mail:yandf@bupt.edu.cn
Zhang Miao, Wang Zixian, Yan Danfeng. Illumination robust image transformations for feature-based SLAM using photometric and feature matches loss[J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 92-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jcupt.bupt.edu.cn/EN/10.19682/j.cnki.1005-8885.2022.1012
1. MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. 2. CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. 3. QIN T, LI P L, SHEN S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. 4. CHURCHILL W, NEWMAN P. Experience-based navigation for long-term localisation. The International Journal of Robotics Research, 2013, 32(14): 1645-1661. 5. LINEGAR C, CHURCHILL W, NEWMAN P. Work smart, not hard: Recalling relevant experiences for vast-scale but time-constrained localisation. Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA’15), 2015, May 26-30, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2015: 90-97. 6. PATON M, MACTAVISH K, WARREN M, et al. Bridging the appearance gap: Multi-experience localization for long-term visual teach and repeat. Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’16), 2016, Oct 9-14, Daejeon, Republic of Korea. Piscataway, NJ, USA: IEEE, 2016: 1918-1925. 7. PATON M, MACTAVISH K, BERCZI L P, et al. I can see for miles and miles: An extended field test of visual teach and repeat 2.0. Proceedings of the 11th Conference on Field and Service Robotics (FSR’17), 2017, Sept 12-15, Zurich, Switzerland. Berlin, Germany: Springer, 2018: 415-431. 8. DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: Self-supervised interest point detection and description. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'18), 2018, Jun 18-22, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 224-236. 9. SARLIN P E, CADENA C, SIEGWART R, et al. From coarse to fine: Robust hierarchical localization at large scale. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 12716-12725. 10. LI D J, SHI X S, LONG Q W, et al. DXSLAM: A robust and efficient visual slam system with deep features. Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’20), 2020, Oct 25-29, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2020: 4958-4965. 11. ARANDJELOVIĆ R, GRONAT P, TORII A, et al. NetVLAD: CNN architecture for weakly supervised place recognition. Proceedings of the2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 5297-5307. 12. TORII A, ARANDJELOVIĆ R, SIVIC J, et al. 24/7 place recognition by view synthesis. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015, Jun 7-12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 1808-1817. 13. WEYAND T, KOSTRIKOV I, PHILBIN J. PlaNet-photo geolocation with convolutional neural networks. Computer Vision: Proceedings of the 14th European Conference on Computer Vision (ECCV’16): Part VIII, 2016, Oct 11-14, Amsterdam, Netherlands. LNIP 9912. Berlin, Germany: Springer, 2016: 37-55. 14. SARLIN P E, DEBRAINE F, DYMCZYK M, et al. Leveraging deep visual descriptors for hierarchical efficient localization. Proceedings of the 2nd Conference on Robot Learning (CoRL’18), 2018, Oct 29-31, Zurich, Switzerland. 2018: 456-465. 15. CLEMENT L, KELLY J. How to train a CAT: Learning canonical appearance transformations for direct visual localization under illumination change. IEEE Robotics and Automation Letters, 2018, 3(3): 2447-2454. 16. CORKE P, PAUL R, CHURCHILL W, et al. Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, Nov 3-8, Tokyo, Japan. Piscataway, NJ, USA: IEEE, 2013: 2085-2092. 17. MCMANUS C, CHURCHILL W, MADDERN W, et al. Shady dealings: Robust, long-term visual localisation using illumination invariance. Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA'14), 2014, May 31-Jun 7, Hong Kong, China. Piscataway, NJ, USA: IEEE, 2014: 901-906. 18. CLEMENT L, GRIDSETH M, TOMASI J, et al. Learning matchable image transformations for long-term metric visual localization. IEEE Robotics and Automation Letters, 2020, 5(2): 1492-1499. 19. RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF. Proceedings of the 2011 International Conference on Computer vision, 2011, Nov 6-13, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2011: 2564-2571. 20. SATTLER T, MADDERN W, TOFT C, et al. Benchmarking 6DOF outdoor visual localization in changing conditions. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 8601-8610. 21. TAIRA H, OKUTOMI M, SATTLER T, et al. InLoc: Indoor visual localization with dense matching and view synthesis. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7199-7209. 22. RATNASINGAM S, COLLINS S. Study of the photodetector characteristics of a camera for color constancy in natural scenes. Journal of the Optical Society of America A, 2010, 27(2): 286-294. 23. HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770-778. 24. IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning (ICML’15), 2015, Jul 6-11, Lille, France. 2015: 448-456. 25. HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV'15), 2015, Dec 7-13, Santiago, Chile. Piscataway, NJ, USA: IEEE, 2015: 1026-1034. 26. ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection. Proceedings of the 9th European Conference on Computer Vision (ECCV‘06): Part I, 2006, May 7-13, Graz, Austria. LNIP 3951. Berlin, Germany: Springer, 2006: 430-443. 27. LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. 28. HARRIS C G, STEPHENS M. A combined corner and edge detector. Proceedings of the 1988 Alvey Vision Conference (AVC’88), 1988, Aug 31-Sept 2, Manchester, UK. 1988: 6p. 29. CLEMENT L, KELLY J, BARFOOT T D. Robust monocular visual teach and repeat aided by local ground planarity and color-constant imagery. Journal of Field Robotics, 2017, 34(1): 74-97. 30. PATON M, POMERLEAU F, MACTAVISH K, et al. Expanding the limits of vision-based localization for long-term route-following autonomy. Journal of Field Robotics, 2017, 34(1): 98-122. 31. GAO X, ZHANG T, LIU Y, et al. 14 lectures on visual SLAM: From theory to practice. Beijing, China: Publishing House of Electronics Industry, 2017 (in Chinese). 32. GAIDON A, WANG Q, CABON Y, et al. Virtual worlds as proxy for multi-object tracking analysis. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 4340-4349. 33. STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems. Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, Oct 7-12, Vilamoura, Portugal. Piscataway, NJ, USA: IEEE, 2012: 573-580. 34. SHI X S, LI D J, ZHAO P P, et al. Are we ready for service robots? The OpenLORIS-scene datasets for lifelong SLAM. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA’20), 2020, May 31-Jun 15, Paris, France. Piscataway, NJ, USA: IEEE, 2020: 3139-3145. 35. GEIGER A, ZIEGLER J, STILLER C. Stereoscan: Dense 3D reconstruction in real-time. Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV’11), 2011, Jun 5-9, Baden-Baden, Germany. Piscataway, NJ, USA: IEEE, 2011: 963-968. 36. YU C, LIU Z X, LIU X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments. Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’18), 2018, Oct 1-5, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2018: 1168-1174. |
[1] | Han Zhen, Zhou Wen'an, Han Xiaoxuan, Wu Jie. Black-box membership inference attacks based on shadow model [J]. The Journal of China Universities of Posts and Telecommunications, 2024, 31(4): 1-16. |
[2] | Zhang Guangwei, Zhao Bing, Li Ruifan. Multi-level fusion with deep neural networks for multimodal sentiment classification [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 25-33. |
[3] | Yang Chao, Li Yimin, Li Tong, Xu Siya, Qi Jun, Zhang Yu. Intelligent Service Function Chain Mapping Framework for Cloud-and-Edge-Collaborative IoT [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 54-68. |
[4] | Yang Jingjing, Guo Yuchun, Feng Tingting, Chen Yishuai. User Friendly Preferential Private Recommendation [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 43-53. |
[5] | Shao Zihao, Qu Tianguang, Wang Huiqiang, Zou Yifan, Lv Hongwu. User selection based on user-union and relative entropy in mobile crowdsensing [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 34-42. |
[6] | Miao Jiansong, Li Hairui, Zheng Ziyuan, Wang Chu, Zhao Zhenmin. Secrecy Energy Efficiency Maximization for UAV-Enabled Multi-Hop Mobile Relay System [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 81-91. |
[7] | Tang Fei, Dong Kun, Ye Zhangtao, Ling Guowei. Authentication scheme for industrial Internet of things based on DAG blockchain [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(6): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||