The Journal of China Universities of Posts and Telecommunications ›› 2021, Vol. 28 ›› Issue (4): 1-12.doi: 10.19682/j.cnki.1005-8885.2021.2001
• Artificial intelligence • Next Articles
Ming Yue, Li Wenmin, Xu Siya, Gao Lifang, Zhang Hua, Shao Sujie, Yang Huifeng
Received:
2020-12-22
Revised:
2021-07-29
Accepted:
2021-07-29
Online:
2021-08-31
Published:
2021-10-11
Contact:
Corresponding author: Li Wenmin, E-mail: liwenmin@bupt.edu.cn
E-mail:liwenmin@bupt.edu.cn
Supported by:
CLC Number:
Ming Yue, Li Wenmin, Xu Siya, Gao Lifang, Zhang Hua, Shao Sujie, Yang Huifeng. Liveness detection of occluded face based on dual-modality convolutional neural network[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(4): 1-12.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jcupt.bupt.edu.cn/EN/10.19682/j.cnki.1005-8885.2021.2001
1. Wayman J L. Biometrics in identity management systems. IEEE Security and Privacy, 2008, 6(2): 30 -37 2. Liu C X. The development trend of evaluating face-recognition technology. Proceedings of the 2014 International Conference on Mechatronics and Control (ICMC'14), 2014, Jul 3 - 5, Jinzhou, China. Piscataway, NJ, USA: IEEE, 2014: 1540 -1544 3. Zhu Y L, Chen S C. Sub-image method based on feature sampling and feature fusion for face recognition. Journal of Software, 2012, 23(12): 3209 -3220 (in Chinese) 4. Best-Rowden L, Han H, Otto C, et al. Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Transactions on Information Forensics and Security, 2014, 9(12): 2144 -2157 5. Klare B F, Klein B, Taborsky E, et al. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'15), 2015, Jun 7 -12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 1931 -1939 6. Boutellaa E, Boulkenafet Z, Komulainen J, et al. Audiovisual synchrony assessment for replay attack detection in talking face biometrics. Multimedia Tools and Applications, 2016, 75 (9): 5329 -5343 7. Zhang J, Yan Y, Lades M. Face recognition: eigenface, elastic matching, and neural nets. Proceedings of the IEEE, 1997, 85(9): 1423 -1435 8. Albiol A, Monzo D, Martin A, et al. Face recognition using HOG -EBGM. Pattern Recognition Letters, 2008, 29(10): 1537 -1543 9. Yan L, Hu X P. Face anti-spoofing based on context and OCSVM. Application of Electronic Technique, 2020, 46(6): 32 - 35 (in Chinese) 10. Chen H N, Chen Y W, Tian X, et al. A cascade face spoofing detector based on face anti-spoofing R - CNN and improved retinex LBP. IEEE Access, 2019, 7: 170116 -170133 11. Cao Y, Tu L, Wu L F. Face liveness detection using gray level co-occurrence matrix and wavelets analysis in identity authentication. Journal of Signal Processing, 2014, 30 (7): 830 - 835 (in Chinese) 12. Wen D, Han H, Jain A K. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 746 -761 13. Boulkenafet Z, Komulainen J, Hadid A. Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1818 -1830 14. Tirunagari S, Poh N, Windridge D, et al. Detection of face spoofing using visual dynamics. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 762 -777 15. Freitas P T, Komulainen J, Anjos A, et al. Face liveness detection using dynamic texture. Eurasip Journal on Image and Video Processing, 2014(1): 1 -2 16. Akbulut Y, Sengur A, Budak U, et al. Deep learning based face liveness detection in videos. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP'17), 2017, Sept 16 - 17, Malatya, Turkey. Piscataway, NJ, USA: IEEE, 2017: 1 -4 17. Garg S, Mittal S, Kumar P, et al. DeBNet: multilayer deep network for liveness detection in face recognition system. proceedings of the 7th International Conference on Signal Processing and Integrated Networks (SPIN'20), 2020, Feb 27 -28, Noida, India. Piscataway, NJ, USA: IEEE, 2020: 1136 -1141 18. Sun W Y, Song Y, Chen C S, et al. Face spoofing detection based on local ternary label supervision in fully convolutional networks. IEEE Transactions on Information Forensics and Security, 2020, 15: 3181 -3196 19. Xu Z Q, Li S, Deng W H. Learning temporal features using LSTM-CNN architecture for face anti-spoofing. Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR'15), 2015, Nov 3 - 6, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2015: 141 -145 20. Atoum Y, Liu Y J, Jourabloo A, et al. Face anti-spoofing using patch and depth-based CNNs. Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB'17), 2017, Oct 1 - 4, Denver, CO, OSA. Piscataway, NJ, USA: IEEE, 2017: 319 -328 21. Ma Y K, Wu L F, Jian M, et al. Algorithm to generate adversarial examples for face-spoofing detection. Journal of Software, 2019, 30(2): 469 -480 (in Chinese) 22. Kuang H F, Ji R R, Liu H, et al. Multi-modal multi-layer fusion network with average binary center loss for face anti-spoofing. Proceedings of the 27th ACM International Conference on Multimedia (MM'19), 2019, Oct 21 -25, 2019, Nice, France. New York, NY, USA: ACM, 2019: 48 -56 23. Kim T Y, Lee K M, Lee S U, et al. Occlusion invariant face recognition using two-dimensional PCA. Advances in Computer Graphics and Computer Vision, 2007, 4: 305 -315 24. Song L X, Gong D H, Li Z F, et al. Occlusion robust face recognition based on mask learning with pairwise differential siamese network. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV'19), 2019, Oct 27-Nov 2, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2019: 773 -782 25. Jongsun K, Jongmoo C, Juneho Y, et al. Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1977 -1981 26. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770 -778 27. Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527 -1554 28. Pang J M, Chen K, Shi J P, et al, Libra R - CNN: towards balanced learning for object detection. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15 - 20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 821 -830 |
[1] | Wang Zixian, Zhang Miao, Yan Danfeng . DRO-SLAM: Real-time object-aware SLAM for navigation robots and autonomous driving in dynamic environments [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(3): 14-24. |
[2] | Zhang Luying, Liu Xiaokai, Li Zhao, Xu Fangmin, Zhao Chenglin. Prediction based dynamic resource allocation method for edge computing first networking [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(3): 78-87. |
[3] | Chen Hui, Jiang Xiaoling, Wu Tianting, Mou Xingyu. Crowd sensing data delivery based on tangle DAG network [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(3): 88-98. |
[4] | Guo Xiangbo, Wang Jian, Huang Mengjie, Wang Minghui, Yang Jian, Yu Yongtao. Deep knowledge tracking algorithm based on forgetting law [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 17-27. |
[5] | Wang Xianlun, Wang Guangyu, Cui Yuxia. Facial expression recognition based on improved ResNet [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 28-38. |
[6] | Wu Hongxin, Lin Zhijian, Chen Pingping, Chen Feng. Joint partial computation offloading and resource allocation in MEC-enable networks [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 80-86. |
[7] | Zhu Ruijie, Li Gong, Wang Peisen, Zhang Wenchao. Reinforced virtual optical network embedding algorithm in EONs for edge computing [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 18-29. |
[8] | Kong Chao, Ou Weihua, Gong Xiaofeng, Li Weian, Han Jie, Yao Yi, Xiong Jiahao. Face anti-spoofing based on multi-modal and multi-scale features fusion [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 73-82. |
[9] | Yang Jingjing, Guo Yuchun, Zhao Yongxiang, Chen Yishuai. How time latency in navigation Apps affects traffic [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 53-63. |
[10] | Zhang Han Jing Yinji Zhao Yongli. FS-LSTM: sales forecasting in e-commerce on feature selection [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(5): 92-98. |
[11] | Shi Jinjing, Wang Wenxuan, Xiao Zimeng, Mu Shuai, Li Qin. Quantum classifier with parameterized quantum circuit based on the isolated quantum system [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(4): 21-31. |
[12] | Liu Hailing, Zhang Jie, Qin Sujuan, Gao Fei. Quantum algorithm for soft margin support vector machine with hinge loss function [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(4): 32-41. |
[13] | Wang Jian, Qiao Kuoyuan, Yuan Yanlei, Liu Xiaole, Yang Jian. Adaptive learning path recommendation model for examination-oriented education [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(4): 77-88. |
[14] | Meng Wei, Wang Liting, Lu Meng. Summary of research on recommendation system based on serendipity [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(4): 89-105. |
[15] | Jia Wei, Gong Chao. Precise and efficient Chinese license plate recognition in the real monitoring scene of intelligent transportation system [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||