References
1. Gao Z, Dai L L, Mi D, et al. MmWave massive MIMO based wireless backhaul for 5G ultra-dense network. IEEE Wireless Communications, 2015, 22(5): 13 -21
2. Ge X H, Tu S, Mao G Q, et al. 5G ultra-dense cellular networks. IEEE Wireless Communications, 2016, 23(1): 72 -79
3. Kamel M, Hamouda W, Youssef A. Ultra-dense networks: a survey. IEEE Communications Surveys and Tutorials, 2016, 18(4): 2522 -2545
4. An J P, Yang K, Wu J S, et al. Achieving sustainable ultra-dense heterogeneous networks for 5G. IEEE Communications Magazine, 2017, 55(12): 84 -90
5. Hao P, Yan X, Yuan Y F, et al. Ultra dense network: challenges, enabling technologies and new trends. China Communications, 2016, 13(2): 30 -40
6. Shgluof I, Ismail M, Nordin R. Semi-clustering of victim-cells approach for interference management in ultra-dense femtocell networks. IEEE Access, 2017(5): 9032 -9043
7. Chen Y, Yang Z H, Zhang H T. Opportunistic-based dynamic interference coordination in dense small cells deployment. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Oct 8 -13, 2017, Montreal, QC, Canada, 2017: 1 -5
8. Cao J Q, Peng T, Qi Z Q, et al. Interference management in ultra-dense networks: a user-centric coalition formation game approach. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5188 -5202
9. Munir H, Hassan S A, Pervaiz H, et al. A game theoretical network-assisted user-centric design for resource allocation in 5G heterogeneous networks. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May 15 -18, 2016, Nanjing, China, 2016: 1 -5
10. Zaidi S, Affes S, Vilaipornsawai U, et al. Wireless access virtualization strategies for future user-centric 5G network. 2016 IEEE Globecom Workshops ( GC Wkshps), Dec 4 -8, 2016, Washington, DC, USA, 2016: 1 -7
11. Liu Y M, Li X, Ji H, et al. Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2295 -2311
12. Davenport M A, Boufounos P T, Baraniuk R G. Compressive domain interference cancellation. Proceedings of the Workshop: Signal Processing with Adaptive Sparse Structured Representation (SPARS), Saint-Malo, France, 2009: 1 -5
13. Lu X D, Yang P C, Li D J, et al. Interference cancellation based on compressive sensing for passive coherent radar (PACOR). 2015 IEEE Radar Conference ( RadarCon ), May 10 -15, 2015, Arlington, VA, USA, 2015: 0527 -0532
14. Gomaa A, Al-Dhahir N. Compressive-sensing-based approach for NBI cancellation in MIMO-OFDM. 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, Dec 5 -9, 2011, Kathmandu, Nepal, Houston, TX, USA, 2011: 1 -5
15. Liu J C, Liu A, Lau V K N. Compressive interference mitigation and data recovery in cloud radio access networks with limited fronthaul. IEEE Transactions on Signal Processing, 2017, 65(6): 1437 -1446
16. Gowda N M, Kannu A P. Interferer identification in HetNets using compressive sensing framework. IEEE Transactions on Communications, 2013, 61(11): 4780 -4787
17. Rappaport T, Tamir J, Murdock J, et al. Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems. 2012 IEEE Radio and Wireless Symposium, Jan 15 -18, 2012, Santa Clara, CA, USA, 2012: 151 -154
18. Murdock J, Ben-Dor E, Tamir J, et al. A 38 GHz cellular outage study for an urban outdoor campus environment. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Apr 1 -4, 2012, Shanghai, China, 2012: 3085 -3090
19. Bajwa W U, Haupt J, Sayeed A M, et al. Compressed channel sensing: anewapproach to estimating sparse multipath channels. Proceedings of the IEEE, 2010, 98(6): 1058 -1076
20. Alkhateeb A, El A O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 831 -846
21. Mendez-Rial R, Rusu C, Gonzalez-Prelcic N, et al. Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches? IEEE Access, 2016(4): 247 -267
22. Jiang J, Chen Y. Interference cancellation based on compressive sensing framework for ultra dense network. 2017 IEEE 17th International Conference on Communication Technology (ICCT), Oct 27 -30, 2017, Chengdu, China, 2017: 810 -814
23. Behrens R T, Scharf L L. Signal processing applications of oblique projection operators. IEEE Transactions on Signal Processing, 1994, 42(6): 1413 -1424
24. Blumensath T, Davies M E. Stagewise weak gradient pursuits. IEEE Transactions on Signal Processing, 2009, 57(11): 4333 -4346
25. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655 -4666
26. Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computation Harmonic Analysis, 2009, 26: 301 -321
27. Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586 -597
28. Do T T, Gan L, Nguyen N, et al, Sparsity adaptive matching pursuit algorithm for practical compressed sensing. 2008 42nd Asilomar Conference on Signals, Systems and Computers, Oct 26 -29, 2008, Pacific Grove, CA, USA, 2008: 581 -587
29. Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230 -2249
30. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 2009, 9(3): 317 -334
31. Wang J, Kwon S, Shim B. Generalized orthogonal matching pursuit. IEEE Transactions on Signal Processing, 2012, 60(12): 6202 -6216 |