References
1. Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 2015, 81(4):
281 -329
2. Candes E J, Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(2): 5406 -5425
3. Baraniuk R G, Candes E J, Elad M, et al. Applications of sparse representation and compressive sensing. Proceedings of the IEEE, 2010, 98(6): 906 -909
4. Gan L. Block compressed sensing of natural images. Proc 15th International Conference on Digital Signal Processing (DSP), July 1 -4, Cardiff, UK: IEEE, 2007: 403 -406
5. Fowler J E, Mun S, Tramel E W. Block-based compressed sensing of images and video. Foundations and Trends in Signal Processing, 2012, 4(4): 297 -416
6. Ravishankar S, Bresler Y. Learning sparsifying transforms. IEEE Transactions on Signal Processing, 2013, 61(5): 1072 -1086
7. Goyal V K, Fletcher A K, Rangan S. Compressive sampling and lossy compression. IEEE Signal Processing Magazine, 2008, 25(2): 48 -56
8. Boufounos P. Universal rate-efficient scalar quantization. IEEE Transactions on Information Theory, 2012, 58(3): 1861 -1872
9. Mun S, Fowler J E. DPCM for quantized block-based compressed sensing of images. Proc 20th European Signal Processing Conference (EUSIPCO), August 27 -31, Bucharest, Romania, 2012: 1424 -1428
10. Zhang J, Zhao D B, Jiang F. Spatially directional predictive coding for block-based compressive sensing of natural images. IEEE International Conference on Image Processing (ICIP),
September 15 -18, Melbourne, Australia, 2013: 1021 -1025
11. Liu H, Li K D, Wang B, et al. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery. Journal of Applied Remote Sensing, 2017, 11(1): 015003
12. University of Southern California. The image database of the signal and imaging processing institute (USC-SIPI). Volume 2: Aerials |