1. Pan E, Sun M, Chung P W, et al. Three-dimensional kinetic Monte Carlo simulation of prepatterned quantum-dot island growth. Applied Physics Letters, 2007, 91(19): 193110-1-193110-3
2. Shim Y, Amar J G. Rigorous synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Physical Review B, 2005, 71(11): 115436-1-115436-12
3. Song Y X, Yu Z Y, Liu Y M. Influences of flux and interruption on InAs/GaAs quantum dot superlattice growth. Acta Physica Sinica, 2008, 57 (4): 2399-2043(in Chinese)
4. Jogai B. Three-dimensional strain field calculations in multiple InN/AlN wurtzite quantum dots. Journal of Applied Physics, 2001, 90 (2): 699-704
5. Cheche T O, Chang Y C. Analytical approach for strain and piezoelectric potential in conical self-assemble quantum dots. Journal of Applied Physics, 2008, 104(8): 083524-1-083524-11
6. Liu Y M, Yu Z Y, Ren X M, et al. Self-organized GaN/AlN hexagonal quantum-dots: strain distribution and electronic structure. Chinese Physics B, 2008, 17 (9): 3471-3478
7. Barker J K, Warburton R J, O’Reilly E P. Electron and hole wave functions in self-assembled quantum rings. Physical Review B 2004, 69(3): 035327-1-035327-9
8. Dvurechenskii A V, Nenashev A V, Yakimov A I. Electronic structure of Ge/Si quantum dots. Nanotechnology, 2002, 13(1): 75-80
9. Zhang X B, Ryou J H, Dupuis R D. Growth of InAlAs self-assembled quantum dots on InAlGaAs/InP for 1.55 μm laser applications by metalorganic chemical vapor deposition. Applied Physics Letters, 2006, 89 (19): 191104-1-191104-3
10. Lai Y J, Lin Y C, Fu C P, et al. Growth mode transfer of self-assembled CdSe quantum dots grown by molecular beam epitaxy. Journal of Crystal Growth, 2006, 286 (2): 338-344
11. Li S S, Xia J B, Yuan Z L, et al. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Physical Review B, 1996, 54(16): 11575-11581
12. Li S S, Xia J B. Valence band structures of the InAs/GaAs quantum ring. Journal of Applied Physics, 2002, 91(5): 3227-3231
13. Li S S, Xia J B. Electronic structures of N quantum dot molecule. Applied Physics Letters, 2007, 91(9): 092119-1- 092119-3
14. Park S H, Ahn D, Lee Y T, et al. Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band theory. Japanese Journal of Applied Physics, 2003, 42(1): 144-149
15. Park S H, Kim J J, Kim H M. Eight-band calculation of the intersubband transition in InGaAs/GaAs strained coupled quantum dots. Jouranl of the korean Physical Society, 2002, 42(5): 706-710
16. Ren G B, Rorison J M. Electronic structure of In1-xGaxAs quantum dots via finite difference time domain method. Physical Review B, 2008, 77(2): 245318-1-245318-6
17. Pryor C. Eight-band calculations of strained InAs/GaAs quantum dots compared with one- four- and six-band approximations. Physical Review B, 1998, 57 (12): 7190-7195
18. Pryor C, Pistol M E, Samuelson L. Electronic structure of strained InP/Ga0.51In0.49P quantum dots. Physical Review B, 1997, 56 (16): 10404-10411 |