1. Carpenter G A, Grossberg S, Rosen D B. Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Network, 1991, 4(6): 759?771
2. Kwan H K. One-layer feedforward neural network for fast maximum/minimum determination. Electronics Letters, 1992 28(17): 1583?1585
3. Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’99): Vol 2, Jun 23?25, 1999, Fort Collins, CO, USA. Piscataway, NJ, USA: IEEE, 1999: 246?252
4. Kaewtrakulpong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance System (AVBS’01), Sept, 2001, Kingston, UK. Boston, MA, USA: Kluwer Academic Publisher, 2002: 135?144
5. Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. Proceedings of the European Conference on Computer Vision (ECCV’00), Jun 26? Jul 1, 2000, Dublin, Irland. LNCS 1843. Berlin, Germany: Springer-Verlag, 2000: 751?767
6. Elgammal A, Duraiswami R, Davis L S. Efficient non-parametric adaptive color modeling using fast Gauss transform. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’01): Vol 2, Dec 8?14, 2001, Kauai, HI, USA. Piscataway, NJ, USA: IEEE, 2001: 563?570
7. Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 2002, 70(9): 1151?1163
8. Bi S, Han L Q, Zhong Y X, et al. An improved non-parametric background model and two-level classifier for traffic information recognition. Proceedings of the 2011 IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS’11), Sept 15?17, 2011, Beijing, China. Piscataway, NJ, USA: IEEE, 2011: 495?499
9. Song K T, Tai J C. Real-time background estimation of traffic imagery using group-based histogram. Journal of Information Science and Engineering, 2008, 24(2): 411?423
10. Bi S, Han L Q, Zhong Y X, et al. All-day traffic states recognition system without vehicle segmentation. The Journal of China Universities of Posts and Telecommunications, 2011, 18(S2): 1?11
11. Kim K, Chalidabhongseb T H, Harwooda D, et al. Real-time foreground-background segmentation using codebook model. Real-time Imaging, 2005,11(3):172?185
12. Ilyas A, Scuturici M, Miguet S. Real time foreground-background segmentation using a modified codebook mode. Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS’09), Sept 2?4, 2009, Genova, Italy. Piscataway, NJ, USA :IEEE, 2009: 454?459
13. Barnich O, Van Droogenbroeck M. ViBe: A powerful random technique to estimate the background in video sequences. Proceedings of the 34th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’09), Apr 19?24, 2009, Taipei, China. Piscataway, NJ, USA: IEEE, 2009: 945?948
14. Cheng F C, Huang S C, Ruan S J. Illumination-sensitive background modeling approach for accurate moving object detection. IEEE Transactions on Broadcating, 2011, 57(4): 749?801
15. Haines T S F, Xiang T. Background subtraction with Dirichlet process mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 670?683
16. Mukherjee D, Wu Q M J, Nguyen T M. Gaussian mixture model with advanced distance measure based on support weights and histogram of gradients for background suppression. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1086?1096
17. Cheng F C, Chen B H, Huang S C. A background model re-initialization method based on sudden luminance change detection. Engineering Applications of Artificial Intelligence, 2015, 38: 138?146
18. Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657?662
19. Martínez-Zarzuela M, Díaz-Pernas F, Antón-Rodríguez M, et al. Multi-scale neural texture classification using the GPU as a stream processing engine. Machine Vision and Applications, 2011, 22(6): 947?966
20. Zhang W, Wu J, Ying H B. Moving vehicles detection based on adaptive motion histogram. Digital Signal Processing, 2010, 20(3): 793?805
21. Liao S C, Zhao G Y, Kellokumpu V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’10), Jun 13?18, 2010, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2010: 1301?1306
22. Zhao G Y, Ahonen T, Matas J, et al. Rotation-invariant image and video description with local binary pattern features. IEEE Transactions on Image Processing, 2010, 21(4): 1465?1477
23. Yoshinaga S, Shimada A, Nagahara H, et al. Object detection based on spatiotemporal background models. Computer Vision and Image Understanding, 2014, 122: 84?91
24. Liang D, Kaneko S, Hashimoto M, et al. Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes. Pattern Recognition, 2015, 48(4): 1374?1390
25. Ali I, Mille J, Tougne L. Space-time spectral model for object detection in dynamic textured background. Pattern Recognition Letters, 2012, 33(13): 1710?1716
26. Han B, Davis L S. Density-based multifeature background subtraction with support vector machine. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1017?1023
27. Zhang J, Xu S K, Huang K H, et al. Accurate moving target detection based on background subtraction and SUSAN. International Journal of Computer and Electrical Engineering, 2012, 4(4): 436?439
28. Culibrk D, Marques O, Socek D, et al. Neural network approach to background modeling for video object segmentation. IEEE Transactions on Neural Networks, 2007, 18(6): 1614?1627
29. Chacon-Murguia M I, Gonzalez-Duarte S. An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3286?3298
30. Do B H, Huang S C. Dynamical background modeling based on radial basis function neural networks for moving object detection. Proceedings of the 2011 IEEE International Conference on Multimedia and Expo (ICME’11), Jul 11?15, 2011, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2011: 4p
31. Pajares G. A Hopfield neural network for image change detection. IEEE Transactions on Neural Networks, 2006, 17(5): 1250?1264
|