[1] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355 -368.
[2] MUNIYAPPAN S, ALLIRANI A, SARASWATHI S. A novel approach for image enhancement by using contrast limited adaptive histogram equalization method. Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies ( ICCCNT’13), 2013, Jul 4 - 6, Tiruchengode, India. Piscataway, NJ, USA: IEEE, 2013: 1 -6.
[3] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/ surround Retinex. IEEE Transactions on Image Processing, 1997, 6(3): 451 -462.
[4] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image processing, 1997, 6(3): 965 -976.
[5] AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6: 14410 -14430.
[6] PAK M, KIM S. A review of deep learning in image recognition. Proceedings of the 4th International Conference on Computer Applications and Information Processing Technology (CAIPT’17), 2017, Aug 8 -10, Kuta Bali, Indonesia. Piscataway, NJ, USA: IEEE, 2017: 1 -3.
[7] LI S T, SONG W W, FANG L Y, et al. Deep learning for hyperspectral image classification: an overview. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690 -6709.
[8] LI H M. Deep learning for image denoising. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7(3): 171 -180.
[9] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR’17 ), 2017, Jul 21 - 26, Honolulu, HI, USA.
Piscataway, NJ, USA: IEEE, 2017: 136 -144.
[10] REN W Q, LIU S F, MA L, et al. Low-light image enhancement via a deep hybrid network. IEEE Transactions on Image Processing, 2019, 28(9): 4364 -4375.
[11] SHEN L, YUE Z H, FENG F, et al. MSR-net: low-light image enhancement using deep convolutional network. arXiv Preprint, arXiv: 1711. 02488, 2017.
[12] TAO L, ZHU C, XIANG G Q, et al. LLCNN: a convolutional neural network for low-light image enhancement. Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP’17), 2017, Dec 10 - 13, St Petersburg, FL, USA. Piscataway, NJ, USA: IEEE, 2017: 1 -4.
[13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016,
Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770 -778.
[14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint, arXiv: 1409. 1556, 2014.
[15] IGNATOV A, KOBYSHEV N, TIMOFTE R, et al. DSLR-quality photos on mobile devices with deep convolutional networks. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV’17), 2017, Oct 22 -29, Venice, Italy. Piscataway, NJ, USA: IEEE, 2017: 3277 -3285.
[16] WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement. arXiv Preprint, arXiv:
1808. 04560, 2018.
[17] GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 2017, 26(2): 982 -993.
[18] DONG X, WANG G, PANG Y, et al. Fast efficient algorithm for enhancement of low lighting video. Proceedings of the 2011 IEEE International Conference on Multimedia and Expo ( ICME’11), 2011, Jul 11 - 15, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2011: 1 -6.
[19] LÜF F, LU F, WU J H, et al. MBLLEN: Low-light image/ video enhancement using CNNs. (2018-08-02)[2021-01-18]. http:/ /www. bmva. org/ bmvc/2018/ contents/ papers/0700. pdf.
[20] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a“ completely blind’’ image quality analyzer. IEEE Signal
Processing Letters, 2012, 20(3): 209 -212.
|