1. Perez-Gonzalez J, Fraga-Aguilar M, Valdes-Cristerna R, et al. EEG denoising using narrow-band independent component selection in time domain. Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC’17), Oct 5-8, 2017, Banff, Canada. Piscataway, NJ, USA: IEEE, 2017: 1105-1109
2. Ghasemi M, Azeem M U, Muehlschlegel S, et al. Prescription patterns for routine EEG ordering in patients with intracranial hemorrhage admitted to a neurointensive care unit. Journal of Critical Care, 2019, 50: 262-268
3. Brogger J, Eichele T, Aanestad E, et al. Visual EEG reviewing times with SCORE EEG. Clinical Neurophysiology Practice, 2018, 3: 59-64
4. Jobert M, Arns M. Pharmaco-EEG, pharmaco-sleep and EEG-based personalized medicine. Neuropsychobiology, 2015, 72(3/4): 137-138
5. Olbrich S, van Dinteren R, Arns M. Personalized medicine: Review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder. Neuropsychobiology, 2015, 72(3/4): 229-240
6. Nicotera A G, Hagerman R J, Catania M V, et al. EEG abnormalities as a neurophysiological biomarker of severity in autism spectrum disorder: A pilot cohort study. Journal of Autism and Developmental Disorders, 2019, 49(6): 2337-2347
7. Tatum W O, Rubboli G, Kaplan P W, et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical Neurophysiology, 2018, 129(5): 1056-1082
8. Mert A, Akan A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Analysis and Applications, 2018, 21: 81-89
9. Candra H, Yuwono M, Chai R, et al. EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal mutual information method. Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’17), Jul 11-15, 2017, Seogwipo, Republic of Korea. Piscataway, NJ, USA: IEEE, 2017: 463-466
10. Gupta V, Chopda M D, Pachori R B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sensors Journal, 2019, 19(6): 2266-2274
11. Balasubramanian G, Kanagasabai A, Mohan J, et al. Music induced emotion using wavelet packet decomposition—An EEG study. Biomedical Signal Processing and Control, 2018, 42: 115-128
12. Li J P, Zhang Z X, He H G. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cognitive Computation, 2018, 10(2): 368-380
13. Cao R, Deng H, Wu Z, et al. Decreased synchronization in alcoholics using EEG. IRBM: Innovation and Research in Biomedical Engineering, 2017, 38(2): 63-70
14. Mannan M M N, Kamran M A, Kang S, et al. Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain-computer interface: A comprehensive study. Complexity, 2018, ID 4853741/18-35
15. Minguillon J, Lopez-Gordo M A, Pelayo F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomedical Signal Processing and Control, 2017, 31:407-418
16. Yang B H, Duan K, Fan C C, et al. Automatic ocular artifacts removal in EEG using deep learning. Biomedical Signal Processing and Control, 2018, 43: 148-158
17. Mannan M M N, Kamran M A, Jeong M Y. Identification and removal of physiological artifacts from electroencephalogram signals: A review. IEEE Access, 2018, 6: 30630-30652
18. Binias B, Palus H, Jaskot K. Real-time detection of eye blink related artifacts for brain-computer interface applications. Man-machine Interactions 4. Cham, Switzerland: Springer, 2016: 281-290
19. Jiang X, Bian G B, Tian Z. Removal of artifacts from EEG signals: A review. Sensors, 2019, 19(5): 987-1004
20. Fr?lich L, Dowding I. Removal of muscular artifacts in EEG signals: A comparison of linear decomposition methods. Brain Informatics, 2018, 5:13-22
21. Garg H K, Kohli A K. Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Systems, and Signal Processing, 2017, 36: 404-419
22. Borowicz A. Using a multichannel Wiener filter to remove eye-blink artifacts from EEG data. Biomedical Signal Processing and Control, 2018, 45: 246-255
23. Nallamothu S S, Dodda R K, Dasara K S. Eye blink artefact cancellation in EEG signal using sign-based nonlinear adaptive filtering techniques. Information Systems Design and Intelligent Applications. Singapore: Springer, 2018: 86-95
24. Janghel R R, Sahu S P, Tatiparti G, et al. Noise removal from epileptic EEG signals using adaptive filters. Machine Intelligence and Signal Analysis. Singapore: Springer, 2019: 37-47
25. Waser M, Garn H, Jennum P J, et al. A blind source-based method for automated artifact-correction in standard sleep EEG. Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’18), Jul 18-21, 2018, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2018: 6010-6013
26. Gilberet R C M P, Roy R S, Sairamya N J, et al. Automated artifact rejection using ICA and image processing algorithms. Proceedings of the 2017 International Conference on Signal Processing and Communication (ICSPC’17), Jul 28-29, 2017, Coimbatore, India. Piscataway, NJ, USA: IEEE, 2017: 354-358
27. Kusumandari D E, Fakhrurroja H, Turnip A, et al. Removal of EOG artifacts: Comparison of ICA algorithm from recording EEG. Proceedings of the 2nd International Conference on Technology, Informatics, Management, Engineering and Environment, Aug 19-21, 2014, Bandung, Indonesia. Piscataway, NJ, USA: IEEE, 2014: 335-339
28. Reddy M S, Reddy P R. Restoring EEG signals by artifact suppression with different independent component analysis techniques. Artificial Intelligence and Evolutionary Computations in Engineering Systems. Singapore: Springer, 2018: 517-525
29. Mayeli A, Zotev V, Refai H, et al. Real-time EEG artifact correction during fMRI using ICA. Journal of Neuroscience Methods, 2016, 274: 27-37
30. Patel R, Gireesan K, Sengottuvel S, et al. Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. Journal of Medical and Biological Engineering, 2017, 37(2): 201-208
31. Harender, Sharma R K. EEG signal denoising based on wavelet transform. Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA’17): Vol 1, Apr 20-22, 2017, Coimbatore, India. Piscataway, NJ, USA: IEEE, 2017: 758-761
32. Singh B, Wagatsuma H. Two-stage wavelet shrinkage and EEG-EOG signal contamination model to realize quantitative validations for the artifact removal from multiresource biosignals. Biomedical Signal Processing and Control, 2019, 47: 96-114
33. Santillán-Guzman A, Oliveros-Oliveros J J, Morín-Castillo M M. Introducing a combination of ICA-EMD to suppress muscle and ocular artifacts in EEG signals. Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’18), Jul 18-21, 2018, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2018: 1250-1253
34. Yang B H, Duan K, Zhang T. Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter. Neurocomputing, 2016, 214: 1053-1060
35. Mishra A, Bhateja V, Gupta A, et al. Noise removal in EEG signals using SWT-ICA combinational approach. Smart Intelligent Computing and Applications. Singapore: Springer, 2019: 217-224
36. Ghosh R, Sinha N, Biswas S K. Automated eye blink artefact removal from EEG using support vector machine and autoencoder. IET Signal Processing, 2018, 13(2): 141-148
37. Masci J, Meier U, Cire?an D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction. Proceedings of the 21st International Conference on Artificial Neural Networks (ICANN’11): Part 1, Jun 14-17, 2011, Espoo, Finland. LNCS 6791. Berlin, Germany: Springer, 2011: 52-59
38. He P, Wilson G, Russell C. Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Medical and Biological Engineering and Computing, 2004, 42(3): 407-412
39. Koelstra S, Muhl C, Soleymani M, et al. Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31 |