1. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436-444.
2. Pang L, Lan Y Y, Xu J, et al. A survey on deep text matching. Chinese Journal of Computers, 2017, 40(4): 985-1003. (in Chinese)
3. Huang P S, He X D, Gao J F, et al. Learning deep structured semantic models for Web search using clickthrough data. Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management (CIKM’13), Oct 27-Nov 1, 2013, San Francisco, CA, USA. New York, NY, USA: ACM, 2013: 2333-2338
4. Shen Y L, He X D, Gao J F, et al. A latent semantic model with convolutional-pooling structure for information retrieval. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM’14), Nov 3-7, 2014, Shanghai, China. New York, NY, USA: ACM, 2014: 101-110
5. Hu B T, Lu Z D, Li H, et al. Convolutional neural network architectures for matching natural language sentences. Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14), Dec 8-13, 2014, Montreal, Canada. Cambridge, MA, USA: MIT Press, 2014: 2042-2050
6. Yin W P, Schütze H. MultiGranCNN: An architecture for general matching of text chunks on multiple levels of granularity. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing: Vol 1, Jul 26-31, 2015, Beijing, China. Association for Computational Linguistics (ACL), 2015: 63-73
7. Lu Z D, Li H. A deep architecture for matching short texts. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13): Vol 1, Dec 5-10, 2013, Lake Tahoe, NV, USA. New York, NY, USA: ACM, 2013: 1367-1375
8. Pang L, Lan Y Y, Guo J F, et al. Text matching as image recognition. Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16), Feb
12-17, 2016, Phoenix, AZ, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence (AAAI), 2016: 2793-2799
9. Kim Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP'14). Oct 25-29, 2014, Doha, Qatar. Association for Computational Linguistics (ACL), 2014: 1746-1751
10. Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Jun 22-27, 2014, Baltimore, Maryland. Association for Computational Linguistics (ACL), 2014: 655-665
11. Chen H L, Han F X, Niu D, et al. MIX: Multi-channel information crossing for text matching. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’18), Aug 19-23, 2018, London, UK. New York, NY, USA: ACM, 2018:110-119
12. Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13): Vol 2, Dec 5-10, 2013, Lake Tahoe, NV, USA. New York, NY, USA: ACM, 2013: 3111-3119
13. Salton G. The SMART retrieval system—Experiments in automatic document processing. Upper Saddle River, NJ, USA: Prentice-Hall, 1971
14. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. Proceedings of the 2013 International Conference on Learning Representations (ICLR’13), May 2-4, 2013, Scottsdale, AZ, USA. Association for Computational Linguistics (ACL), 2013
15. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011, 12(7): 257-269
16. Dolan B. Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. Proceedings of the 20th International Conference on Computational Linguistics (COLING’04), Aug 23-27, 2004, Geneva, Switzerland. Association for Computational Linguistics (ACL), 2004: 7p
17. Socher R, Huang E H, Pennington J, et al. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. Proceedings of the 2011 Neural Information Processing Systems Conference (NIPS'11), Dec 12-15, 2011, Granada, Spain. New York, NY, USA: ACM, 2011: 9p
18. Abbas F, Malik M K, Rashid M U, et al. WikiQA—A question answering system on Wikipedia using freebase, DBpedia and Infobox. Proceedings of the 6th International Conference on Innovative Computing Technology (INTECH’16), Aug 24-26, 2016, Dublin, Ireland. Piscataway, NJ, USA: IEEE, 2016: 185-193
19. Yin W P, Schütze H, Xiang B, et al. ABCNN: Attention-based convolutional neural network for modeling sentence pairs. Transactions of the Association for Computational Linguistics, 2016, 4: 259-272
20. Yang Y, Yih S W, Meek C. WIKIQA: A challenge dataset for open-domain question answering. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Sept 19-21, 2015, Lisbon, Portugal. Association for Computational Linguistics (ACL), 2015: 2013-2018
21. Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17), Jul 21-26, 2017, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 2261-2269 |