1. Tao J, Tan T. Affective computing: a review. Proceedings of the 1st International Conference on Affective Computing and Intelligent Interaction, Oct 22-24, 2005, Beijing, China. LNCS 3784. Berlin, Germany: Springer, 2005: 981-995
2. Schuller B, Batliner A, Steidl S, et al. Recognising realistic emotions and affect in speech: state of the art and lessons learnt from the first challenge. Speech Communication, 2011, 53(9/10): 1062-1087
3. Schuller B, Arsic D, Wallhoff F, et al. Emotion recognition in the noise applying large acoustic feature sets. Proceedings of the 3rd International Conference on Speech Prosody, May 2-5, 2006, Dresden, Germany. 2006: IP-128
4. You M Y, Chen C, Bu J J, et al. Emotion recognition from noisy speech. Proceedings of the 2006 IEEE International Conference on Multimedia and Expo (ICME’06), July 9-12, 2006, Toronto, Canada. Piscataway, NJ, USA: IEEE, 2006: 1653-1656
5. Schuller B, Wöllmer M, Moosmayr T, et al. Recognition of noisy speech: a comparative survey of robust model architecture and feature enhancement. EURASIP Journal on Audio, Speech, and Music Processing, 2009: 942617/1-17
6. Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
7. Candès E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592
8. Zhao X M, Zhang S Q, Lei B C. Robust emotion recognition in noisy speech via sparse representation. Neural Computing and Applications, 2014, 24(7): 1539-1553
9. Haupt J, Nowak R. Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory, 2006, 52(9): 4036-4048
10. Lanckriet G R G, Cristianini N, Bartlett P, et al. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 2004, 5(1): 27-72
11. Jin Y, Song P, Zheng W M, et al. Novel feature fusion method for speech emotion recognition based on multiple kernel learning. Journal of Southeast University, 2013, 29(2): 129-133
12. Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-120
13. Needell D, Vershynin R. Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316
14. Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321
15. Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249
16. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
17. Saligrama V, Zhao M Q. Thresholded basis pursuit: LP algorithm for oder-wise optimal support recovery for sparse and approximately sparse signals from noisy random measurements. IEEE Transactions on Information Theory, 2011, 57(3): 1567-1586
18. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129-159
19. Figueiredo M A, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compress sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
20. Blumensath T, Davies M. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274
21. Plumbley M D. Recovery of sparse representations by polytope faces pursuit. Proceedings of the 2006 International Conference on Independent Component Analysis and Blind Source Separation, Mar 5-8, 2006, Charleston, SC, USA. LNCS3889. Berlin, Germany: Springer, 2006: 206-213
22. Yeh C Y, Su W P, Lee S J. An efficient multiple-kernel learning for pattern classification. Expert Systems with Applications, 2013, 40(9): 3491-3499
23. Chen L J, Mao X, Xue Y L, et al. Speech emotion recognition: features and classification models. Digital Signal Processing, 2012, 22(6): 1154-1160
24. Chandaka S, Chatterjee A, Munshi S. Support vector machines employing cross-correlation for emotional speech recognition. Measurement, 2009, 42(4): 611-618
25. Lee C C, Mower E, Busso C, et al. Emotion recognition using a hierarchical binary decision tree approach. Speech Communication, 2011, 53(9/10): 1162-1171
26. Burkhardt F, Paeschke A, Rolfes M, et al. A database of German emotional speech. Proceedings of the 9th European Conference on Speech Communication and Technology (INTERSPEECH’05), Sept 4-8, 2005, Lisbon, Portugal. 2005: 1517-1520
27. Jiang X Q, Xia K W, Xia X Y, et al. Speech emotion recognition using semi-definite programming multiple-kernel SVM. Journal of Beijing University of Posts and Telecommunications, 2015, 38(S1): 67-71 (in Chinese)
28. Yang B, Lugger M. Emotion recognition from speech signals using new harmony features. Signal Processing, 2010, 90(5): 1415-1423
29. Meyer P E, Schretter C, Bontempi G. Information-theoretic feature selection in microarray dada using variable complementarity. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(3): 261-274
30. Löfberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the 2004 International Symposium on Computer Aided Control Systems Design, Sept 2-4, 2004, Taipei, China. Piscataway, NJ, USA: IEEE, 2004: 284-289
31. Henríquez P, Alonso J B, Ferrer M A, et al. Nonlinear dynamics characterization of emotional speech. Neurocomputing, 2014, 132: 126-135