1. Chua T, Tang J, Hong R, et al. NUS-WIDE: a real-world web image database from National University of Singapore. Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Jul 8-10, 2009, Santorini, Greece. New York, NY, USA: ACM, 2009: 48-56
2. Burges C J, Shaked T, Renshaw E, et al. Learning to rank using gradient descent. Proceedings of the 22nd International Conference on Machine Learning (ICML’05), Aug, 2005, Bonn, Germany. New York, NY, USA: ACM, 2005: 89-96
3. Rasiwasia N, Pereira J C, Coviello E, et al. A new approach to cross-modal multimedia retrieval. Proceedings of the 18th ACM International Conference on Multimedia (MM’10), Oct 25-29, 2010, Firenze, Italy. New York, NY, USA: ACM, 2010: 251-260
4. Akaho S. A kernel method for canonical correlation analysis. Proceedings of the International Meeting of the Psychometric Society (IMPS’01), Jul 15-19, 2001, Osaka, Japan. arXiv preprint cs/0609071, 2007, 40(2): 263-269
5. Andrew G, Arora R, Bilmes J, et al. Deep canonical correlation analysis. Proceedings of the 30th International Conference on Machine Learning (ICML’13), Jun 16-21, 2013, Atlanta, GA, USA. New York, NY, USA: ACM, 2013: 1247-1255
6. Srivastava N, Salakhutdinov R. Learning representations for multimodal data with deep belief nets. Proceedings of the 29th International Conference on Machine Learning Workshop (ICML’12), Jun 26-Jul 1, 2012, Scotland, UK. New York, NY, USA: ACM, 2012: 8p
7. Welling M, Rosen-Zvi M, Hinton G E. Exponential family harmoniums with an application to information retrieval. Proceedings of the Advances in Neural Information Processing Systems (NIPS’04), Dec 13-18, 2004, Vancouver, Canada. 2004: 1481-1488
8. Hinton G E, Salakhutdinov R R. Replicated softmax: an undirected topic model. Proceedings of the Advances in Neural Information Processing Systems (NIPS’09), Dec 7-10, 2009, Vancouver, Canada. 2009: 1607-1614
9. Feng F X, Wang X J, Li R F. Cross-modal retrieval with correspondence autoencoder. Proceedings of the 22nd ACM International Conference on Multimedia (MM’14), Nov 3-7, 2014, Orlando, FL, USA. New York, NY, USA: ACM, 2014: 7-16
10. Burges C J C. From ranknet to lambdarank to lambdamart: an overview. Learning, 2010, 11: 23-581
11. Cao Z, Qin T, Liu T Y, et al. Learning to rank: from pairwise approach to listwise approach. Proceedings of the 24th International Conference on Machine Learning (ICML’07), Jun 20-24, 2007, Corvallis, OR, USA. New York, NY, USA: ACM, 2007: 129-136
12. Taylor M, Guiver J, Robertson S, et al. SoftRank: optimizing non-smooth rank metrics. Proceedings of the International Conference on Web Search and Data Mining, Feb 11-12, 2008, Palo Alto, CA, USA. 2008: 77-86
13. Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning (ICML’08), Jun 5-9, 2008, Helsinki, Finland. New York, NY, USA: ACM, 2008: 1096-1103
14. Nocedal J, Wright S J. Numerical optimization. 2nd ed. New York, NY, USA: Springer, 2006
15. Ngiam J, Khosla A, Kim M, et al. Multimodal deep learning. Proceedings of the 28th International Conference on Machine Learning (ICML’11), Jun 28-Jul 2, 2011, Bellevue, WA, USA. New York, NY, USA: ACM, 2011: 689-696
16. van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9: 2579-2605 |