1. Niederreiter H. Periodic sequences with the large k-error linear complexity. IEEE Transactions on Information Theory, 2003, 49(2): 501-505
2. Xing C P, Ding Y. Multisequences with large linear and k-error linear complexity from Hermitian function field. IEEE Transactions on Information Theory, 2009, 55(8): 3858-3863
3. Niederreiter H, Venkateswalu A. Periodic multisequences with large error linear complexity. Designs, Codes and Cryptography, 2008, 49(1/2/3): 33-45
4. Stamp M, Martin C F. An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Transactions on Information Theory, 1993, 39(4): 1389-1401
5. Meidl W. How many bits have to be changed to decrease the linear complexity? Designs, Codes and Cryptography, 2004, 33(2): 109-122
6. Zhou J Q. On the k-error linear complexity of sequences with period over GF(q) . Designs, Codes and Cryptography, 2001, 58(3): 279-296
7. Wei S M, Xiao G Z, Chen Z. A fast algorithm for determining the linear complexity of a binary sequence with period . Science in China, 2001, 44(6): 453-460
8. Wei S M, Chen Z, Xiao G Z. A fast algorithm for the k-error linear complexity of a binary sequence. Proceedings of the 2001 International Conferences on Info-tech and Info-net (ICII’01): Vol 5, Oct 29-Nov 1, 2001, Beijing, China. Piscataway, NJ, USA: IEEE, 2001: 152-157
9. Feng G L, Tzeng K K. A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Transactions on Information Theory, 1991, 37(5): 1274-1287
10. Wang L P, Zhu Y F, Pei D Y. On the lattice basis reduction multisequence synthesis algorithm. IEEE Transactions on Information Theory, 2004, 50(11): 2905-2910
11. Venkateswalu A. Studied on error linear complexity measures for multisequences. Ph. D Thesis. Singapore: Department of Mathematics, National University of Singapore, 2007
12. Meidl W, Niederreiter H, Venkateswarlu A. Error linear complexity mearsures for multisequences. Journal of Complexity, 2007, 23(2): 169-192
13. Lidl R, Niederreiter H. Finite fields. Reading, MA, USA: Addison-Wesley, 1993 |