3. Vertterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation. IEEE Transactions on Signal Processing, 2002, 50(6): 1417-1428
4. Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(1): 1-9
5. Gnanadurai D, Sadasivam V. An efficient adaptive thresholding technique for wavelet based image denoising. International Journal of Signal Processing, 2006, 2(2): 114-119
6. He L H, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497
7. Vera E, Mancera L, Babacan S D, et al. Bayesian compressive sensing of wavelet coefficients using multiscale laplacian priors. Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing (SSP’09), Aug 31-Sep 3, 2009, Cardiff, UK. Piscataway, NJ, USA: IEEE, 2009: 229-232
8. Candes E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 2006, 52(12): 5406-5425
9. Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
10. Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30
11. Baraniuk R. A lecture on compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121
12. Do T T, Tran T D, Gan L. Fast compressive sampling with structurally random matrices. Proceedings of the 33rd International Conference on Acoustics,Speech, and Signal Processing (ICASSP’08), Mar 1-Apr 4, 2008, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2008: 3369-3372 |