1. Zhang Y J, Liu D T, Yu J X, et al. EMA remaining useful life prediction with weighted bagging GPR algorithm. Microelectronics Reliability, 2017, 75: 253-263
2. Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic Lithium ion cells. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903
3. Micea M V, Ungurean L, Carstoiu G N, et al. Online state-of-health assessment for battery management systems. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1997-2006
4. He W, Williard N, Osterman M, et al. Prognostics of Lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 2011, 196(23): 10314-10321
5. Xian W M, Long B, Li M, et al. Prognostics of Lithium-ion batteries based on the Verhulst model, particle swarm optimization and particle filter. IEEE Transactions on Instrumentation and Measurement, 2013, 63(1): 2-17
6. Song Y C, Liu D T, Yang C, et al. Data-driven hybrid remaining useful life estimation approach for spacecraft Lithium-ion battery. Microelectronics Reliability, 2017, 75: 142-153
7. Zheng X J, Wu H Y, Chen Y. Remaining useful life prediction of Lithium-ion battery using a hybrid model-based filtering and data-driven approach. Proceedings of the 11th Asian Control Conference (ASCC’17), Dec 17-20, 2017, Gold Coast, Australia. Piscataway, NJ, USA: IEEE, 2017: 2698-2703
8. Mei X Y, Fang H J. A novel fusion prognostic approach for the prediction of the remaining useful life of a Lithiumion battery. Proceedings of the 37th Chinese Control Conference (CCC’18), Jul 25-27, 2018, Wuhan, China. Piscataway, NJ, USA: IEEE, 2018: 5801-5805
9. Eddahech A, Briat O, Vinassa J M. Lithium-ion battery performance improvement based on capacity recovery exploitation. Electrochimica Acta, 2013, 114: 750-757
10. Zhang Z X, Si X S, Hu C H, et al. A prognostic model for stochastic degrading systems with state recovery: Application to Liion batteries. IEEE Transactions on Reliability, 2017, 66(4): 1293-1308
11. Saha B, Goebel K. Modeling Li-ion battery capacity depletion in a particle filtering framework. Proceedings of the Annual Conference of the Prognostics and Health Management Society. Septe 27-Oct 1, 2009, San Diego, CA USA. Piscataway, NJ, USA: IEEE, 2009: 2909-2924
12. Haykin S S. Neural networks and learning machines. Upper Saddle River, NJ, USA: Pearson Education, 2009
13. Zhou X, Hsieh S J, Peng B, et al. Cycle life estimation of Lithium-ion polymer batteries using artificial neural network and support vector machine with time-resolved thermography. Microelectronics Reliability, 2017, 79: 48-58
14. Bicer Y, Dincer I, Aydin M. Maximizing performance of fuel cell using artificial neural network approach for smart grid applications. Energy, 2016, 116: 1205-1217
15. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14): Vol 2, Dec 8-13, 2014, Montreal, Canada. Cambridge, MA, USA: MIT Press, 2014: 2672-2680
16. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv e-preprint, arXiv:1411.1784, 2014
17. Arjovsky M, Chintala S, Bottou L. Wasserstein gan. arXiv e-preprint, arXiv:1701.07875, 2017
18. Villani C. Optimal transport: Old and new. Berlin, Germany: Springer-Verlag, 2008
19. Saha B, Goebel K. Battery data set. NASA Ames Prognostics Data Repository. Moffett Field, CA, USA: Ames Research Center, 2007
20. Cai Y S, Yang L, Deng Z W, et al. Prediction of Lithium-ion battery remaining useful life based on hybrid data-driven method with optimized parameter. Proceedings of the 2nd International Conference on Power and Renewable Energy (ICPRE’17), Sept 20-23, 2017, Chengdu, China. Piscataway, NJ, USA: IEEE, 2017: 6p |