1. Shimotsu S, Oikawa S, Saitou T, et al. LiNbO3 optical single-sideband modulator. Proceedings of the 25th Optical Fiber Communication Conference (OFC’00), Mar 7-10, 2000, Baltimore, MD, USA. Piscataway, NJ, USA: IEEE, 2000: PD16.1-PD16.4
2. Kawanishi T, Higuma K, Fujita T, et al. High-speed optical FSK modulator for optical packet labeling. Proceedings of the 29th Optical Fiber Communication Conference (OFC’04): Vol 2, Feb 23-27, 2004, Los Angeles, CA, USA. Piscataway, NJ, USA: IEEE, 2004
3. Lu G W, Miyazaki T, Ichikawa J, et al. High-speed DQPSK transmitter using a monolithically integrated quad Mach-Zehnder IQ modulator driven at quarter bit-rate. Proceedings of the 34th European Conference on Optical Communication (ECOC’08), Sep 21-25, 2008, Brussels, Belgien. Piscataway, NJ, USA: IEEE, 2008
4. Asobe M, Miyazawa H, Tadanaga O, et al. A highly damage-resistant Zn: LiNbO3 ridge waveguide and its application to a polarization- independent wavelength converter. IEEE Journal of Quantum Electronics, 2003, 39(10): 1327-1333
5. Iwai M, Yoshino T, Yamaguchi S, et al. High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser. Applied Physics Letters, 2003, 83(18): 3659-3661
6. Kato Y, Usui Y, Nakajima H, et al. S. Quasi-phase matched difference-frequency generator with adhered ridge waveguide fabricated by dry etching method. Proceedings of Conference on Lasers and Electro-Optics (CLEO’05): Vol 1, May 22-27, 2005, Baltimore, MD, USA. Piscataway, NJ, USA: IEEE, 2005: 210-212
7. Gopalakrishnan G K, Burns W K, Bulmer C H. Electrical loss mechanisms in traveling wave LiNbO3 optical modulators. Electronics Letters, 1992, 28(2): 207-208
8. Shi Y. Micromachined wide-band lithium-niobate electrooptic modulators. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2-2): 810-815
9. Kawanishi T, Sakamoto T, Chiba A, et al. High-speed dual-parallel Mach-Zehnder modulator using thin lithium niobate substrate. Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’08), Feb 24-28, 2008, San Diego, CA, USA. Piscataway, NJ, USA: IEEE, 2008
10. Courjal N, Porte H, Martinez A, et al. LiNbO3. Mach-Zehnder modulator with chirp adjusted by ferroelectric domain inversion. IEEE Photonics Technology Letters, 2002, 14(11): 1509-1511
11. Murata H, Kaneda K, Yamamoto S. Low-power and low-chirp guided-wave electrooptic intensity modulator by use of domain-inverted structure. Proceedings of Conference on Lasers and Electro-Optics (CLEO’03), Jun 1-6, 2003,Baltimore, MD, USA. Piscataway, NJ, USA: IEEE, 2003: 1008-1010
12. Ichikawa J, Oikawa S, Yamamoto F, et al. Zero chirp broadband Z-cut LiNbO3 optical modulator using polarization reversal and branch electrode. Proceedings of 29th Optical Fiber Communication Conference (OFC’04): Vol 1, Feb 23-27, 2004, Los Angeles, CA, USA. Piscataway, NJ, USA: IEEE, 2004
13. Nambu Y, Usami K, Tsuda Y, et al. Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses. Physical Review A, 2002, 66: 033816
14. Kato Y, Usui Y, Nakajima H, et al. Quasi-phase matched difference- frequency generator with adhered ridge waveguide fabricated by dry etcing method. Proceedings of Conference on 2006 Lasers and Electro-Optics (CLEO’05): Vol 1, May 23-27, 2005,Baltimore, MD, USA. Piscataway, NJ, USA: IEEE, 2005: 210-212
15. Usui Y, Okubo T, Nakajima H, et al. Highly efficient wavelength converter for photonic network. Proceedings of Conference on 2006 Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (CLEO/QELS’06),May 21-26, 2006,Baltimore, MD, USA. Piscataway, NJ, USA: IEEE, 2006.
16. Tangdiongga E, Hansen Mulvad H C, Waardt H, et al. SOA-based clock recovery and demultiplexing in a lab trial of 640 Gb/s OTDM transmission over 50-km fibre link. Proceedings of the 33rd European Conference on Optical Communication (ECOC’07), Sep 16-20, 2007, Berlin, Germany. Piscataway, NJ, USA: IEEE, 2007: PD1.2
17. Agis F G, Ware C, ErasmeD, et al. 10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in periodically poled lithium niobate. IEEE Photonics Technology Letters, 2006, 18(13): 1460-1462
18. Oxenløwe L K, Agis F G, Ware C, et al. 640 Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device. Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’08), Feb 24-28, 2008, San Diego, CA, USA. Piscataway, NJ, USA: IEEE, 2008 |