2. Wan Z X. Geometry of classical groups over finite fields. 2nd ed. Beijing, China: Science Press, 2002
3. Pei D Y. Message authentication codes. Hefei, China: University of Science and Technology of China Press, 2009 (in Chinese)
4. Feng R Q. Another construction of Cartesian authentication codes from geometry of classical groups. Northeast Mathematical Journal, 1999, 15(1): 103-114
5. Gao S G. Two constructions of Cartesian authentication codes from unitary geometry. Applied Mathematics: A, Journal of Chinese Universities, 1996, 11(3): 343-354 (in Chinese)
6. Chen S D, Zhao D W. Two constructions of optimal codes from unitary geometry Cartesian authentication over finite fields. Acta Mathematicae Applicatae Sinica, 2013, 29(4): 829-836
7. Chen S D, Zhao D W. Construction of multi-receiver multi-fold authentication codes from singular symplectic geometry over finite fields. Algebra Colloquium, 2013, 20(4): 701-710
8. Simmons G J. Message authentication with arbitration of transmitter/ receiver disputes. Advances in Cryptology: Proceedings of the 7th Annual International Cryptology Conference (Crypto’87), Aug 16-20, 1987, Santa Barbara, CA, USA. LNCS 293. Berlin, Germany: Springer-Verlag, 1988: 151-165
9. Zhou Z, Hu Z M. The constructions of A2-codes from conventional A-codes. Journal of Electronics (China), 1997, 19(4): 489-493 (in Chinese).
10. Kurosawa K, Obana S. Combinatorial bounds for authentication codes with arbitration. Design, Codes and Cryptography, 2001, 22(3): 265-281
11. Gao Y, Hu H F. Some new constructions of authentication codes with arbitration and multi-receiver from singular symplectic geometry. Journal of Applied Mathematics, 2011: 1155-1173
12. Brickell E F, Stinson D R. Authentication codes with multiple arbiters. Advances in Cryptology: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques (EUROCRYPT’88), May 25-27, 1988, Davos, Switzerland. LNCS 330. Berlin, Germany: Springer-Verlag, 1988: 51-55
13. Desmedt Y, Yung M. Arbitrated unconditionally secure authentication can be unconditionally protected against arbiter’s attacks. Advances in Cryptology:Proceedings of the 10th Annual International Cryptology Conference (CRYPTO’90), Aug 11-15, 1990, Santa Barbara, CA, USA. LNCS 537. Berlin, Germany: Springer-Verlag, 1991: 177-181
14. Johansson T. Further results on asymmetric authentication schemes. Information and Computation, 1999, 151(1/2): 100-133
15. Johansson T. Lower bounds on the probability of deception in authentication with arbitration. IEEE Transactions on Information Theory, 1994, 40(5): 1573-1585
16. Gao Y, Liu Y Q. The construction of A3-code from projective spaces over finite field. WSEAS Transactions on Mathematics, 2013, 12(10): 1024-1033 |