1. Liang J L, Yang S Y, Zhang J Y. A computationally efficient algorithm for range, DOA and frequency estimation of near-field sources. Digit Signal Processing, 2009, 19(4): 596-611
2. Hamid K, Mats V. Two decades of array signal processing: the parameters approach. IEEE Transactions on Signal Processing, 1996, 13(4): 67-94
3. Huang Y D, Barkat M. Near-field multiple source localization by passive sensor array. IEEE Transactions on Antennas and Propagation, 1991, 39(7): 968-975
4. Weiss A J, Friedlander B. Range and bearing estimation using polynomial rooting. IEEE Journal of Oceanil Engineering, 1993, 18(2): 130-137
5. Zhi W J, Michnel Y W C. Near field source localization via symmetric subarrays. Proceedings of the 32nd International Conference on Acoustics, Speech, and Signal Processing (ICASSP’07): Vol 1, Apr 15-20, 2007, Honolulu, HI, USA, Piscataway, NJ, USA: IEEE, 2007: 1121-1124
6. Starer D, Nehorai A. Path-following algorithm for passive localization of near-field sources. Proceedings of the 5th ASSP Workshop on Spectrum Estimation and Modeling, Oct 10-12, 1990, Rochester, NY, USA. Piscataway, NJ, USA: IEEE, 1990: 322-326
7. Starer D, Nehorai A. Passive localization of near-field sources by path following. IEEE Transactions on Signal Processing, 1994, 42(3): 677-680
8. Harshman R A. Foundation of the PARAFAC procedure: Model and conditions for an explanatory mutil-mode factor analysis. UCLA Working Papers in Phonetics, 1972, 22(7): 111-117
9. Sidiropoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor array processing. IEEE Transactions on Signal Processing, 2000, 48(3): 2377-2388
10. Yuen N, Friediander B. Performance analysis of higher order ESPRIT for localization of near-field sources. IEEE Transactions on Signal Processing, 1998, 46(3): 709-719
11. Liang J L, Ji B J, Zhao F. A new near-field source localization algorithm using parallel factor analysis. Acta Electronica Sinica, 2007, 35(10): 1909-1915 (in Chinese)
12. Abed-Meraim K, Hua Y. 3-D near field source localization using second order statistics. Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers (ACSSC’97): Vol. 2, Nov 2-5, 1997, Pacific Grove, CA, USA. Los Alamitos, CA, USA: IEEE Computer Society, 1997: 1307-1311
13. Raghu N. Challa, S G. Passive near-field localization of multiple non-Gaussian sources in 3-D using cumulants. Digit Signal Processing, 1998,65(1): 39-53
14. Lee C M, Yoo K S, Lee K K. Efficient algorithm for localizing 3-D narrowband multiple sources. IEE Proceedings: Radar, Sonar and Navigation, 2001, 148(1): 23-26
15. Beng K, Yin Q Y. Closed form parameters estimation for 3-D near field sources. Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (ACSSC’06),Oct 29-Nov 1, 2006, Monterey, CA, USA. Piscataway, NJ, USA: IEEE, 2006: 1133-1136
16. Olivier B, Petre S, Alex B G. Simple and accurate direction of arrival estimation in the case of imperfect spatial coherence. IEEE Transactions on Signal Processing, 2001, 48(4): 730-738
17. Lee S, Thomas K. A performance analysis of subspace based method in the presence of model errors, the MUSIC algorithm. IEEE Transactions on Signal Processing, 1992, 48(7): 1758-1772
18. Sun X Y, Wang B, Jiang H. Two dimensional near-field source localization based on the third-order cyclic moment in multiplicative noise. Acta Electronica Sinica, 2009, 37(9): 2068-2073 (in Chinese)
19. Alex B. G, Christoph F M. Matrix fitting approach to direction of arrival estimation with imperfect spatial coherence of wavefronts. IEEE Transactions on Signal Processing, 1997, 45(7): 2506-2519 |